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A_STRACT

This report summarizes much of the work that has done in the field of stability

theory with regards to the generation of Liapunov functions. The emphasis of the

report has been to survey and discuss the work of American engineers and mathematicians

in this area. But since most of the work was motivated by Russian mathematicians

and engineers, this report also includes a sizable discussion of the Russian contri-

butions. Reference is also made to the contributions due to mathematicians in

England, Japan and Italy. Under separate cover, the writers of this report submit

a sizable llst of references in the stability field and a summary of the theorems

and definitions which are important in the analysis of stability problems.
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LIST OF SYMBOLS

(most symbols 8re defined where they are used in the report and will not be

repeated here)

V = usually denotes a scalar function, or functional which is a Liapunov function

or a candidate for a Liapunov function.

IIxII

t E (a, b)

a G A

A_T =

A* =

& =

En =

Cn =

_V

= usually denotes the Euclidean norm of an n-dlmenslonal vector,

defined as:

1/2
+... + .

means a .< t _< b.

means a _ t $ b.

means a < t < b.

means that element a is a member of set A.

transpose of matrix A

conjugate transpose of matrix A.

time derivative of the vector function, x =-- x(t)i.

Euclidean n-space.

The class of functions having continuous n-th order partial

derlvat ives.

gradient of the scalar f_nction V.
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In this part of the report certain applications of Liapunovts stability

theory to the stability analysis of nonlinear control systems are reviewed.

Section I gives some definitions and basic theorems and Section 2 is a dis-

cussion of the equations describing the control system to be considered here.

The problem of Lur'e is treated in Sections 3 and 4 and the results of

Lur'e are presented as well as more recent results obtained by Lefshetz. Fol-

lowing Section 4 are three examples. Section 5 modifies the restrictions on

the admissable nonlinear characteristics and more useful results are obtained

than in the preceeding two sections. The treatment of Aizerman and Gantmacher

is followed here° An example follows°

In Section 6 the problem of Aizerman is considered. A treatment of the

general second order case due to Krasovskii is presented° An example demon-

strates the verification of Aizerman's conjecture for a particular third order

control system.

Two theorems of Popov along with a discussion of the Liapunov function

of Popov are presented in Section 7, 8 and 9. An important theorem due Ealman

relating the Popov criterion with criterion obtained using Liapunov theory with

a Popov type Liapunov function is given in Section I0o

There follows a compendium of examples illustrating applications of the

theory to particular problems as well as the derivation of some simplified

criteria from the more general results°
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This report deals with new methods of generating Liapunov fu_tions. The

attempt was made to survey the stability field in order to summarize all possible

methods of obtaining l_lapunov func_Loms. Because of the great scope of current

usage of Liapunov theory, or generalizations of Liapunov theory in the fields of

linear and nonlinear ordinary differemtial equations (both autonemous and non-

autonomous), differential-dlfferem_es equatloms, functional equations, stochastic

differential equations and others, our objective of a complete and thorough survey

i

of the field was not accomplished. But we do feel that _much has been accomplished,

these accomplishments will now be outlined in the following paragraphs.

Section Two of this report is concerned with Liapunov functions con_t_ucLed

from the various first integrals which occur in certain dynamic systems. This

use of first integrals was one of the motivating factors in Liapunov's original

work; and we feel that this area of Lialmnov theory is still one of the most

important sources of usable LiapunOv functions.

Section Three discusses the work of Purl and his colleagues at the University

of Pennsylvanlalthls work is a "nonlinear analogue" of the P_ar Theory developed

by Routh and IIurwitz.

Section Fou r considers a method of generating Liapunov functions which many

times is tke first' technique that engineers attempt. The work which we report

here deals with some of the more important results which have been obtained.

Section FiVe deals with the variable gradient method and the many modifications

of the procedure, This method is very useful but has a built-in trial-and-error

procedure which may prove extremely difficult in its application to certain systems.

Sectlo n Six considers the use of Liapunov functions in analyzing the stability

of automatic control systems. This work originated in the Russian school with
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investigators such as Lur'e, Malkin and Popov; the major American contributors

are S. Lefschetz and J. LaSalle.

Section Seven discusses the work of many contributors, with the major

motivation coming from some early theorems of Krasovskii.

Section EiKht deals with the partial differential equations of Zubov and

the extension of this work due to Szeg_.

Section Nine considers the allied topics of boundedness and differential

inequalities. This work is due mainly to Bellman and Yoshizawa(Japan)o

Section Ten presents some of the "Liapunov theory" results obtained for non-

autonomous systems. These results are mainly for linear systems, with some

treatment of the nonlinear problem. We might add, that much of the work in

Section Nine has application to the time-varying stability problem.

Section Eleven is a miscellaneous section. It contains some very important

results of Leighton and Skidmore for autonomous systems. It contains reference

lists dealing with stochastic stability, functional-differential equations and

topological dynamics.

Under separate cover we will submit a reference list on stability theory

and a compendium of theorems and definitions° Also, any general recommendations

and observations will be given by the principal investigator at a contractor's

meeting at Huntsville, Alabama.

A not____eeabout the "physical structure" of this report is in order. Each

section will have its pages numbered independent of the other sections; this

will also be true of theorems, definitions and equations. The symbols will be

defined as used and no complete llst of symbols is given° No list of illustra-

tions is given; the few figures which occur, occur at the location in the report

at which they are being discussed.
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One other note deals with the method of "Separation of Variable" for

generating Liapunov functions. This method was mentioned by J. P. LaSalle

in a speach given in Iowa in 1964. During the contract period, the principal

investigator could not find any further information on this topic° In what

follows, we give a very rough sketch of the method:

We attempt to construct the following type of V-function for an

n-dimensional system,

The class of systems covered is

x i

6" k

if6" k

The candidate for V is

_here

V = Vl(Xl) + V2(x2) + o . + Vn(Xn_.

n

-- L Pik (x)
k=l

= _k o x,

0 then 6- k f(6k)

L col
f°

1

fk (_" k )'

The sufficient conditions for stability are then obtained from V and V.

Russians have used this procedure.)

(The
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INTEGRALMETHODS

sum_ay

In this section of the report we deal with one of the most basic methods

of generating Liapunov functions, "the integral method"° Liapunov's work

was the outgrowth of Lagrange's theorem of minimum potential energy and the

concepts of total energy of a dynamic system. First, we give a brief summary,

along with some simple examples, of the use of first integrals as Liapunov functions.

Next, we discuss the use of Chetaev's linear bundles of first integrals

as candidates for Liapunov functions. Along with this discussion, we include

Pozharltskii's extension of this idea, which is to find a function of the Itn_w_:_

first integrals of a system which is positive definite and use this function as

a Liapunov function°

Then a short discussion is presented concerning the work of Rumiantsev

in extending the second method of Liapunov to the problem of the stability

of motion of continuous media with respect to a finite number of parameters,

which describe the motion through integral e2Zpressions.

Finally, the work of Infante, Walker and Clark is considered. Their

method was to obtain a first integral of a "nearby" system and then use this

function as a candidate for the Liapunov function of the origin system,

whose stability analysis is desired.

A FIRST INTEGRAL USED _S A L_OV F_q_CTION

One of the simplest examples of the application of Liapunov's Stability

Theory is a dynamic system which possesses a first integral, V_) = C = constant.

Since V_) = O, the function V_can be used as a Liapunov function to prove

that the origin is stable. The best way to discuss this work is by example;

thus, we consider a few pertinent examples in the following text.
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Consider the followin_ nonlinear conservative system defined by

"" 3
x = 4x - 4x,

or in state variable form,

Xl = x2

x2 = 4x 1 3 -- 4x I.

The singular points, or equilibrium points, ate found to be:

PI(O,O), P2(I,0), P3(-I,O).

By considering the total energy,

X

2 I_ 2 4 2

E x2 + J (-4Xl 3
= + 4Xl)dX I = x2 - x I + 2x I

2 2
O

where E = O, as a Liapunov function., we see that the origin is stable and that

the boundary of the stability region passes through P2 and P3 and thus is

defined by:

+ 2 2

E = E(Xl, x2) = E(-I,0) = i = x2___- + 2x I

2

Another example is a mathematical pendulum defined by, E5] * ,

2

x'=- sinx,

or

Xl =- _ x2

x2 = _ sin x I.

* Numbers in the square brackets refer to references at the end of the section.



The energy integral is given by

o

where

- 3 -

sin XldX 1

--2 + 2 (I - cosxl) ,

= __ 2x2>,sinai+ 2(_in_l)(-Ax2) =__ O.
2

Therefore, in the neighborhood of (0,0) the system is stable.

A _eneralizatio n of the previous example is the system defined by, _I]

ee

x + g(x) = 0,

which describes a unit point mass under a spring force g(x). The state

variable formulation is

Xl = x2

_2 = -g(xl)"

Since this is a conservative system, the total energy is

Z Oo

where

E = x2(-g(xl) ) + g(xl)x 2 E 0.

Therefore, E is a Liapunov function and proves that (0,0) is a stable

equilibrium point if

(I) x I g(xl) > O, x I # O,

(2) g (o) = o.
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As a final example we consider a linear constant coefficient dissipative

ss_ defined by, E3] ,

+ c_ + kx = 0,

where c > 0, m > 0 and k > 0. The total energy of the system is

2 2

E = m(_) + k x ,
2 2

where
2

=_ (-=x-kx) +k_: =- cx
m

Thus, by LaSalle's thereem, we have an asymptotically stable region throughout

the phase plane°

CKETAEV'S AND POZHARITSKII'S WORK

In reference 65]

for dynamic systems; namely,

where x is an n-vector.

which vanish for x = O.
m

, Pozharitskii considers the equation of perturbed motion

_ = ! Q, t),

These systems admit p< n first integrals

U I _, t) , o.o , Up _, t)

If we can now succeed in finding a function

of known integrals which is definite with respect to _,("l, Up)o o Q

then stability of motion is guaranteed by Liapunov Theorya The first theorem

concerning the existence of such functions give n by Pozharitskii is as follows:

"In order that there exists a__ definite function > (Ul, ... , Up), of

the known integrals, it is necessary and sufficient that a function

2 2

(UI, ... , Up ) = U I _, t) + ..o + Up _, t)

be definite."
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The problem is applying this theorem is still the "old story" of deter-

mining whether or not a given function is definite, semi-definite, or

indefinlte.

Another theorem of Pozharitskii is:

'_fhe function _ (U I, .. o , Up ) will be definite only when for at least

one of the integrals, say, U _ _, t ), it is possible to find a pair of

2 2

definite functions ri ( ]]x// ) andpi( // x// ) such that
2 2

U i _, t ) > ri whenever //x// > 0 and

6c I1:_11  .''+ ... +ut.2_1+u 2+1+ +u

From the proof of this theorem it follows that if it is possible to select

be selected for any other integral. This theorem appears to be more useful

than the first theorem in setting down guidelines for determining a definite

function, _ (UI, ... , Up ).

The practical significance of this second theorem becomes more evident

in the case when UI, o.., Up do not depend explicitly on time. This is stated

as a corollaz_ t

"If UI, ... , Up do not depend explicitly on time, then, in order that

_(U I, be definite, it is and sufficient that at least one ofUp)o • o necessary

the functions U i _ assumes only positive values at all points for which

U I _ = ... = Ui_ I _ = Ui+ I _ = ... = Up _ = 0,

except at _ = O. Moreover if the last condition is satisfied by at least one

of the functions U i _, then it is satisfied by any other function".

This last result essentially simplifies the problem because from any

(p-l) equations

U I = ... = Ui- I = Ui+ I .... =Up = 0 ,
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it is possible to express any p-i variables, say Xn_p+2, ..o , xn , in terms

of Xl, ... , x_-p+1

Xn-p+2 = fl (Xl' "°" ' Xn-p+l) ' °'" ' Xn = fp-i (Xl' "'" ' Xn-p+l)"

If this can be done, then the problem of the definiteness of _ (UI, .o. , Up)
will be determined from the definiteness of the function

V(Xl' °'" ' Xn-p+l)= Ui (Xl' °'" ' Xn-p+l fl' "'" ' fp-i )

with respect to the variables xI .... , Xn_p+ I.

the author in reference _ has given certain conditions under whichThus,

there exist functions of the first integrals which are definite.

The followin_ theorem gives conditions under which no definite first

integral can be constructed from UI, U2, ... , Up .......... :_

"If the known integrals do not depend explicitly on t and if they are of the

form

U i =_i)T _ + higher order terms

where the rank of _I' "'" , _p) is p, then no definite first integral can be

constructed from UI, .o. , Up"

The method of Chetaev _ is as follows:

"If the given time-independent integrals are holomorphic functions of the

variables, then the constants kl , ''- , _p, CI, ..o , Cp are selected in such a

way that the expansion of the function

(U I , oo. , Up ) = _i UI + "'° +

begins with a definite quadratic form".

2 2

p Up+ CIU I + ... + CpUp

By the first theorem of Pozharltskii such constants can be selected only when

the function _ _i, °'" , Up) is definite. Thus, Pozharitskii's theory includes

the work of Chetaev. From the above theory some guidelines concerning the choice of
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the proper functions of first integrals are given.

It was the work of Chetaev in using a definite linear bundle of first

integrals for Liapunov functions which helped the Russian mathematicians and

engineers in their study of the stability analysis of complicated gyroscopes

and other rigid body motions. There are many Russian papers concerning this

application of Liapunov theory; an incomplete llst of references is given in

the back of this section, _6_ to _56_ Q

From reference _6_ we now present an example of Chetaev's theory. This

example concerns the stability of a heavy symmetrical _yroscoPe on _imbals_

thus, there are three degrees of freedom, described by the Eulerian angles

j_ , _ . The principal moments of inertia for the rotor are

A I = BI, el; those for the inner gimbai ring are A2, B2, G2; and the principal

moment of inertia for the outer gimbal ring is C3. The defining equations

for this system.are Euler's equations of motion for rotating rigid bodies. The

first three integrals of the equations of motion are

_" + u_, rb,

--_ (K5 - _u 2) + Kin = K2,

2 + 2(K5- u2) + K3u =

where u = cos _ and the Ki's depend on the parameters of the system. The

equilibrium position corresponds to the case when the rotor's axis is vertical;

that is,

_)= 0 or u = i,_= 0

i=io
The perturbation equations are obtained by introducing the following

change of variables

= xI , _= +x2, = +x 3, u = 1 - x4,
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where the initial conditions of the perturbed motion are

r_o = ro- 3, K,o KI - _I* ' _0 K2 - Kf ,

_40= _4-_4 _.

For the perturbation equations the above first integrals are

R = x 2 + x3 -_o x4 - x3 x4,

K2* - KI*----_-_6x3x_ + 2_6 x3x 4 +

+ (2K6_'o - KI) x 4

+ 2?o (K5- %) x3 ÷ (2_o2 _ - K3)x+.

+

We now attempt to apply Chetaev's method of obtaining Liapunov functions;

consider

V=K*, ' _ *4 +KI( ' " K_1) + _<=K +
O

+ _3 R2'

where the _i are arbitrary a_d K_x42+ i ® u 2 - 2x 4 = O. The V is zero

because V is a combination of first integrals° The linear terms in V can

2

Then the Liapunov function will consist of a quadratic form and third -

and fourth - order terms, The quadrati= form is positive definite amd thus

the stability of the gyroscope with respect to _, 6 , _, is

guaranteed if the following inequalities are satisfied:

0< 3 ">0, K 5 - K6 J 0,_'o K1 - 1/2 K 3 > 0,
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R Ev's woeK

In reference _0_ , Ruminatsev considers an arbitrary holonomic mechanical

system, where ql, o°- , qn are the independent generalized coordinates and

41' °'" ' qn are the generalized velocities. The unperturbed solution of the

system is given as

ql = fi(t), i = I, ... , n ,

where the initial values are qi = fi(to) and qi = fi(to )°

o o
motion, let

ql = fi(to ) +_i' ql = fi(to ) + _i

o o

where _i and_ i are real constants designated as perturbations.

(z)

For the perturbed

Since the

force system remains unchanged, these constants define completely the perturbed

motion.

The values, qi and qi, are now replaced for the perturbed motion by

qi = fi (t) + xi' qi = fi (t) + Xn+i

where xi(t), i = i, ... , 2n, are the variations of the variables qi and qi"

The defining equations of the perturbed motion can be written as

= F(t ,x_) (2)

where _ and F are 2n - vectors.

We assume that F is such that a unique solution exists for every t _t o and

that F (t,0_ = O.

We are interested in the %tabi!ity of the unperturbed motion in (I) with

respect to certain real continuous functions QI, "'" , Qk of the variables

xi and time t. For the unperturbed motion the Qi's are known functions of

time, gi(t). For the perturbed motion the Qi's are functions of t and the

perturbations _ i and_i. Considering the differences ys = Qs - gs' Liapunov

called the unperturbed motion (I) stable with respect to the quantities
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QI' "'" ' Qk' if for all Ls, there exist E i > 0 and E i > 0 such that for any

i' e _ satisfying the conditions

,
for any t >I to: the following i_equalities hold: ly_l <Ls ; s = i, ... , ko

l_urther, we assume that for any set of real values of _ i, _ i, numerically

sufficiently small, there corresponds a certain set of real initial values Ymso

of the variables y ssuch that for a sufficiently small A > 0 ,

II
assumed to hold.

2

Ylo + "'' + y2 _ A ,
ko

The converse of this last statement also is

Since the _ are related to t amid the xj, then the region of variation

Df the real variables t, xI, ... , X2n

2 2

t _ tO , Xl + ..o + X2n _ H,

where to and H > 0 are constar.ts, will correspond to the region

2 2

t >11 t_, Yl + -'- + Yk _ HI,

of variation of the "_ariables t, Ys ' where H 1 > 0 is a constant.

We shall assume (2) has a first integral

_(x, t) consta_,.t,

which is a real, continuous, bounded function of its variables in the

region defined by (3).

THEOREM

"If the differential equations of the perturbed motion (2) admit a

first integral (5) and it is possible to find a positive definite function

_(Yl ' _°" ' Yk' t) such that: the inequality

(3)

(4)

(5)
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_-(YI' ''' ' Yk' t) _ _(x I, ..., X2n,t )

is satisfied for all values of t, ys in region (4), then the unperturbed

motion (I) is stable with respect to the quantities QI , ..o _ Qk."

As an example of this theorem, Rumlantsev considers the well known

problem of stability of rotation about a vertical axis of a heavy rigid body

in the case Of La_ran_e _. We will not repeat his example in this report

since the above discussion was introduced because of its important application

in "continuous media" problems. A short discussion of this fact follows.

The theory given above is useful in the application of the second method

of Liapunov to the problems of stability of motion of continuous media with

_E Eo & f_t_ _ Sfp_mmEe_jwhich describe the motion through

certain integral relationships. Examples of such parameters co-!d be the

coordinates of the center of gravity of a bounded volume of a continuous

medium, or projections of its linear momentum on certain axes, or similar

quantities, whose variations with time are described by ordinary differential

equations. The stability of motion of a continuous medium with respect to

the above mentioned parameters will be called the conditional stabilit 7 of

motion of a continuous medium. An example of this theory is given in the

compendium, example, No. 23.

In passing, we make note of a "somewhat analogous" paper written by

Pozharitskii, _ . This paper deals with the asymptotic stability of

dynamic systems with partial dissipation° That is, in a mechanical system

it may be sufficient to introduce damping in only part of the coordinates

describing the system in order to obtain asymptotic stability. First integrals

are used in his discussion of this concept.
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!_FA_ITE'SWOeK

ordo , u o.o-

mous system with an equilibrium point at the origin° The method of generating

Liapunov functions developed in these papers is an outgrowth of the original

geometric considerations in Liapunov's theory.

The technique proposed by Infante is based on the accessibility and

availability of a nontrivlal tlme-independent integral of the second-order

system which can be used in stability studies. If an integral, with the proper

stability properties, cannot be found, a modified system is constructed which

satisfies two criteria; o_._ne,the system has a first integral with admissible

stability properties and two, the important qualitative properties in the

origlnal system are retained in the modifi_ system. That is, we seek a

"nearby" system. The integral of the nearby system is considered to be a

candidate for a Liapunov function of the original system. We will now

consider the development of Infante's method; and in the compendium at the

end of this section, we include many examples of this method of constructing

Liapunov functions.

Consider the second order system described by

_I = fl(xl, x2)

where any time-independent integral

h (xI, x2) - c,

which might exlst_ must satisfy the following:

(i)

(2)
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A sufficient condition for the existence of h = C is

+ 0o

Since most systems do not satisfy equation (3), the system in (i) must be

modified.

For simplicity, let us replace (i) by the following more con,non state

variable form:

x I = x2

_f2

If_x 2 = 0,

But if _f2

x2 = f2(xl, x2)-

then (4) has an integral which could be used in stability work.

= f3 (Xl' x2) _ 0, then no integral can be found and a "nearby

(3)

(4)

system" is defined in such a way that this new system has a readily accessible

first integral. The first nearby system we try is

x I

Xl = x2 - ./ f3 (Xl' x2) dXl
_o

x2 ffif2 (Xl' x2)"

By (3), system (5) certainly possesses a first integral but there is no

assurance that the qualitative properties of (4) are retained• The system (5)

is modified by adding arbitrary functions which must satisfy certain geomet-

rical criteria in order to retain the qualitative properties of (4)° The

new "nearby" system is

x I

Xl = x2 - ,/ f3 (X'l' x2) dx2 + f4 (Xl' x2)
Vo

x2 = f2 (Xl'X2) + f5 (Xl' x2)'

(5)

(6)
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_f4 _f____5

where _x---_= " -_x 2 " System (6) satisfies equation (3) and the

arbitrary functions f4 and f5 are chosen such that the major qualitative

properties of (4) are retained. The geometrical relationship between

systems (4) and (6) is specified by the third component_x*_of the cross

product of the "flows" in phase space; that is (Xl, x2) of system (4)

"crossed with" (x I, x2) of system (6).

The candidate for the Liapunov function of system (4) is chosen to be

the first integral of system (6). The "nearness" of system (6) to that of

system (4) is determined by the algebraic sign of x*, if both the vectors

(x I, x2), for systems (4) and (6), rotate clockwise in the phase plane.

If x* >/ 0, then the integral of (6) is a Liapunov function of (4) and will

also give an estimate of the region of asymptotic stab_lity about _ = O.

The claims made by Infante in support of his method of generating

Liapunov functions are as follows:

(I) Simplicity of application and requiring no deep insight into the

problem;

(2) the estimates of the domain of asymptotic stability are very good

for wide ranges of the parameters in the differential equations;

(3) and the flexibility of the method, due to the choice of f4 and fs"

A disadvantage of the method is that a poor choice of f4 and f5may contribute

to very conservative estimates of the region of asymptotic stability.

WALKER'S WORK

The work of Walker, E6_ and _, is an extension of Infante's work

to n t-_horder, nonlinear, autonomous systems. He considers systems of the

form

n , n-I
d x + g(x,x,..., d x _ = 0,

/

dt dt

(i)
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which possess (n-l) first integrals

n-I

U t (x, 9.,..., d x
n-1

dt

, t ) = K. , i=l, 2, ..., n-l.
L

Equation (i) can also be written as a system of n - first order equations in

state variable notation:

Xl = fl(Xl, x2, -'', Xn)

x2 = f2(xl' x2' "''' Xn)

(2)

(3)

e

= fn (_i, _2, "",_)"

These equations are equivalent to

dt = dx ! = dx 2 = ... = d_ .

fl f2 fn

Eliminating the explicit dependence of the equation in (4) on time t, we

get n-I first order differential equations in the a variables. The solution

of these equations are (n-l) first integrals of the system in (I); these are

denoted by:

"_'l(a) = Cl

_n_l(.X_.) = On_l,

where _T is (Xl, ... , Xn).

but each integral in (5) must satisfy.

n _i dxj

i = E2
jffil J

The integrals in (5) may not all be independent;

-m _xl. f j = O.-Z
j=l .1

Thus, if we solve the equation (6) for all the (n-l) first integrals our

stability problems "are over". The trouble here is that equation (6), in

general, is very difficult to solve for_i.

(4)

(s)

(e)



- 16 -

One case in which it is possible to obtain a first _ntegral is when the

fl are of the following form:

Xl =Ol _x2'

_H
_2 --02 _x3 _x I

x = -_x n-2 _x
n-i n n-2

(7)

_ _Xn_ I

where H, (91' "'° '_n-2 are certain functions of the state variables•

Combining (6) and (7) gives

_i (_l_K__2+ _i(_. _H __l_H__ +o.• - I

_Xn. 1 n-2 _Xn.2J _ Xn'- 1

_i = H in (8), then we see that the equation is identically satisfied andIf

at least one integral of (7) is H itself• But the disadvantage here is that
=,

very few n order systems have the form given in (7). One example is

OOO •

x +Kx = 0,

or

_l = x2 -_ _--"'-

x2 = x 3

(8)

x3 = - Kx 2 = - -_H ,
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I/K and the (n-l) independent integrals are

2 21 = 1/2 (K x 2 + x 3) = Cl,

th
From the above theory concerning first integrals of the n order system, (I),

and from the work of Infante, Walker derived the following method for con-

structlng Liapunov functions by obtaining first integrals of '_earby systems".

The state variable form of equation (I) is

x I = x 2

= x3

6

Q

= - g(xl,x21 ' .-., Xn).

A modffled system is now chosen which has the same form as (7):

-ax 2

- . l_xI

"_Xn n-2 _Xn. 2 n-I n gn-i

(9)

(10)

•. H = xn =-g x(._,
- _'-_-I

where the gl are restricted by the left sfd_ of the equations. Note that

the last equation in both systems (9) and (i0) are the same; this is done

so as to retain as much similarity between the systems as possible. A more
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condensedform for (101 is obtained if the arbitrary g_ are written such that

_H h2(.x ) ,

m n m

"_Xn_ 2 hn-2 (,_,,

(i1)

_x - g(_,
n-i

_H

where the h i are conveniently defined as

Specification of the h i In this manner does not completely dete_mLine the

"nearby" system but the finding of a specific system is not our objective.

Our objective is to find a usable integral I{ which is also a Liapunov function

of (91. An integral H of the system in (111 and (121 may not be a Liapunov

function of (9) and thus we modify the equations in (II) in the following

manne r:

 x-7 x-7

(12)

_ " zz,
"_x 2 -- _ + f2, (131



V _H + fl

-_v :. "_K + f2
'

fn

(13)

where_fl _. Note, that these fi are different from the fl in (3). In

xj =_x_ i --

conclusion we say that if the fi can be chosen such that V is a Liapunov

function of (9), a new method of generating Liapunov functions has been

u=ve_opeu. _ne _n in k_] are Qez±ne_ by k_±] and k_zj"_'. Many ....e_ampi_

_x i

of this procedure are given in the compendium of examples.

The advantages of this method according to Walker are:

(i) more than half of the gradient,__, of the final Liapun_w

function is developed automatically,

(2) hints to further modifications of the technique are given by the

procedure itself,

(3) good balance between automatic generation of functions and flexi-

bility of application.

The usual disadvantases of other methods are also present here:

(I) restricted to autonomous systems,

(2) results are difficult to obtain for fourth and higher order systems.
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COMPENDII_ OF EXAMPLES

This set of examples considers four types of integral methods used to

construct Liapunov functions. These types are:

(I) the use of a definite first integral for a Liapunov function,

(2) the use of a combination of first integrals,

(3) Infante's integral method for second order systems,

(4) Walker's integral method for higher order systems.

These examples also point out the variety of different physical problems

which can be analyzed by Liapunov's method; such as, electrical networks,

mechanical vibrations, control systems, nuclear reactor dynamics, magneto-

hydrodynamics, and others. The extent of the region of asymptotic stability

is also approximated in many of the following examples°

Example !,r _I] Generalized LRC - Circuit

This example is a generalization of the LRC equation of electricity:

+ f(x)x + g(x) = 0.

In LaSalle's discussion of the region of asymptotic stability, in reference _] ,

he simplified the nonlinearities in the following way:

i)

2)

3)

4)

We introduce the integrals

X

F(x)= / f(x)
O

x

G(x)= / g(x)
4
O

f and g are polynomials,

f is even and g is odd,

g acts llke a straight llne through the origin, and

g is monotone increasing with x.

dx,

dx,
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where F is odd and G is even, and F(O) = G(O) = 0.

Consider the equivalent system

x = y - F(x),

y = - g(x).

Since Iv and g are polynomials, existence of solutions is guaranteed. The

equilibrium solution is the origin (0,0).

As a candidate for a Liapunov function, we choose the total enerzy of

the system when there is no dissipation, f- O; that is,

V = 1/2 y2 + G(x).

The time derivative of the V -function is

V = yy + g(x) x = - yg(x) + g(x)y- g(x) F(x) = - g(x) F(x).

If there exist positive constants a and L such that

g(x) F(x) > 0 for Ixl < a, x # 0

and

G(x) < L for / _ / < a,

region _ , defined by V(x,y) < L , is a measure of
then the bounded

the extent of asymptotic stability of tbm system about the origin.

Example 2, [1_ Van der, ,Po 1' s Equatiop,_

A speclal case of the previous example is the Van der Pol equation:

"x" + _ x(2-1) x + x = O, E>O,

or equivalent ly,

_. = y - g ( x/3 -x) ,

= - X.

The only equilibrium point is the origin and the linear approximation shows

that it is unstable. If t is replaced by -t, then the phase plane
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trajectories remain the same but the orientation is reversed. The origin

is then asymptotically stable. This same effect is obtained if we let

C _ 0 and retain the original orientation of t.

Thus, as in the previous example, we have for V:

2 2
V = y2 /2 + G(x) = x + y

2

where f(x) = _ (x 2 + I) and g(x) = x.

The time derivative of V is

= - x2 ( - I), <o.
2 2

Thus, V _ 0 for x -_ 3 = a Taking L

2
of asymptotic stability chosen in this manner is defined by x

Example 3_ [_ A Second Order Example

Consider the second order equation given by

+ ax + 2bx + 3x 2 =0; a, b > 0,

or its equivalent

= 3/2, we find that the region

2
+ y < 3.

where

"_= -ay 2 .

= y

= - 2bx - ay - 3x 2.

The equilibrium solutions are (0,0) and ( - 2 b/3, 0 )o By linear approxi-

mation, the point (0,0) is asymptotically stable and the point( -- 2/3 b, 0 )

is an unstable "saddle point". By Liapunov theory we can construct a region of

asymptotic stability about the origin. The total energy of the corresponding

undamped (a = 0) system is chosen as a Liapunov function:

V Y2/2 + bx 2 3= + X ,
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Thus, a region of asymptotic stability about (0,0) is defined by the inequality

V y 2 + bx _ + x B < L = b

where V = 4b 3 forms a closed loop containing (0,0) and passing through

27

(-2/3 b;O ).

Zx,a=ple 4,,, _,_ L!enard's_ Zquat!on

For Lienard' s equation

+ f(x)_ + g(x) = 0,

we assume that

(1) Xg(x) > O, x _ O, g(O) = O,

_X

(3) = Jo dx =

Thus, we assume that the potential energy G(x) is positive definite and that

at x = 0 is its _nimum; the potential energy approaches infinity with /x/ ;

V =- f(x) y2 __ O.

Since V _ ¢=o as x2 + y2 _ o_ _ then all

where

and the damping is always positive.

An equivalent system is

= y,

= - g(x) - yf(x).

The Liapunov function is taken to be the total enerR=7 of the system

(where f = 0)4

V = 1/2 y2 + U(x) ,
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solutions are bounded for t _ 0. V _- 0 only for the equilibrium solution

of the system. Thus, the whole region of space is the domain of asymptotic

stability; that is, the system is completely stable.

We also note that if f(x) _ 0 for all x then we can conclude from

above that the system is stable; and if f(x) < 0 for x _ 0, then the

system is unstable at the origin.

Exampl e 5 a___] _Lewls Servomechanism

The defining equation of the Lewis servomechanism is a special case

of Lienard's equation:

+ 2 _ (l-a ]xl ) x + x = 0,W#-

where is a system parameter.

fCx)

In this equation

= 2 _ (I -a

---- X.

]xl ),

The state variable formulation is obtained by choosing y as

y=x+

where the time derivative of y gives

o_ f(x)dx = x + F(x),

" "" )x g( )y = x + f(x = - x = - xo

Thus, the system can be described as

= y - r(x),

= - g(x) = - x.

The same Liapunov function is chosen as in the previous example:

X

V = y2/2 + ,/- g(x) dx ,

O



where

- 25 -

= yy + xg (x)

= - g(x)F(x)
X

--x /o /x/
In the vicinity of the ori_a, the rest position, V is negative semidefinite

if _ >0. Therefore the system is asymptotically stable.

As a numerical example, say that 2 _ = a = 1 • Then

F(x) = x - 2 (3(X) 2/2, and V = 1/2 (x 2 + y2)

where V = - x2/2 (2 - I xl ). Thus, V is negative semldefinite if

I x I _-- _ • Therefore for any solution starting inside, the circle

limit cycle of the system lles outside this circle.

Example 6, [2] Eotatin_ Rigid Bod_

The Euler equations for angular _tlons of a rigid body in space are

A_ = (B-C) qr,

a_ = (c-A) pr,

C_' = (A-B) pq,

where A < C < B. The A, B, C are moments of inertia and the p_ q, r are

angular velocities about the x, y, z -axes, respectively. This sytem

could represent an artificial satellite. The motion which we analyze is the

following; assume that the satellite is rapidly spinning around the z - axis,

that is,

Irl > > I,

Ipi < l,
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The spinning of the body exhibits a certain gyroscopic rigidity but the

motion is unstable. The proof of this statement is as follows.

Let the angular velocity about the z - axis be expressed as the sum

+ R . The
of a steady spin rate Ro plus a small perturbation r., r = r. o

equations of motion become

A6 = (B-C) q (R° +r)

B_ = (C-A) p (Ro +r.) ,

C_. = (A-B) pq.

If p and q are assumed to be positive or zero together in the region of

interest, then we can consider the positive definite form

2

V = pq + r. ,

where

V = p q + p q + 2 r.r.

_T p2 + B-_C q2_ Ro += A

--g- .

The equilibrium solution of this new system is (p, q, r.) = (0, 0, 0).

Thus, when we are sufficiently close to the origin, the second "square

bracket" term in V is dominated by the first "bracketed" term. Therefore if

Ro > O, V and V have the same sign and the system is unstable. If Ro < 0 and

p and q have opposite signs, then the System is also unstable. The con-

clusion is that a rapid spin about the axis of intermediate moment of

inertia can no!tbe maintained.
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Example 7, _] _as_ive Nonlinear Network

The following example is concerned with a passive nonlinear network whose

elements are nonlinear inductors, capacitors, and resistors. In this circuit

there are no internal sources, mutual inductances, or ideal transformers. The

energy storage elements are the inductors, j = I, ..o , m , and the capacitors,

j = m + i, ... , n; _ remaining elements in the circuit are resistors. The

notation is as follows:

ej

i
J

qj

th
= voltage pf the j element

= current in the jth element

= flux in the jth element

th
= charge in the j element°

_.... o=nv_rn_n_ equationsr. of the circuit are:

(1) for the inductors; j = 1, ... , m

ij = fj (_j) = nonlinear function of_j

(2) for the capacitors; j = m + i, .o. , n

e. = f. (qj)_ = nonlinear function of q-33 J

ij

Thus, the state variables, Xl, ... , xn, are_l, .o. ' _r_' qm+l, ... ,qn"

The _quilibrium point is assumed to be x = O, where fj(O) = 0, (j = i, ..., n)o

As a candidate for a Liapunov function for this passive resistive

network, we choose the stored energy of the system:
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E = V(_)

n t

j--I
ej ij dt

j=l o J

n q

j= 1 J
(q

J
) dq

:Z
i o

fj (xj) dxj,

where

n

j= I

e i <0,
J J

for a passive resistive network. Thus, V(x) is a Liapunov function if

(1)

(z)

xj fj (xj) > 0 ,

IO f (xj) dxj = _.J

Therefore, the system is asymptotically stable in the large.

Example 8_ [_ RiKid Body Motion

This example will illustrate the use of linear approximation and the

use of first integrals. Consider the following system which is frequently

seen in the study of the motion of rigid bodies:

x I =Ax 2 (x3 - a) ,

x2 = Bx I (x3 - b),

x3 = XlX2'

/
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where A, B, L_and b are constants. There are three equilibrium states

E 1 : xI = L, x2 = 0, x3 = b

E 2 : Xl=O)x 2 = m, x3 = a

E 3 : x I = 0, x2 = 0, x3 = m

where L, m, n are arbitrary constants.

Stability of E 1

We change the coordinates so that E 1 is at the origin.

of transformation are

Yl =

The new system equations are

Yl = A (b-a)Y2 +AY2 Y3'

The equations

x I - L , Y2 = x2, Y3 = x3 - b.

Y2 = B (Yl + L) Y3'

#3 = O1 + L ) y2.

The characteristic equation for the linear approximation is

- >, A(b-a) 0

0 -- _ LB = _ (L2B -- /_2) = O.

0 L --/_

The characteristic roots are O, L _B- , -- L _-B . For physical

reasons assume L _ 0 ; if L ,, 0 , then E 1 and E3 coincide.

If B > 0, then one of the roots is positive, and E 1 is unstable. If

B _ 0, then we have the critical case and we must look at the nonlinear terms°

There are two obvious first integrals$ namely,

2
Vl = Y2 " BY3 2 = CI
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v2 = (Yl +L>2 _A (Y3 + b - a)2 =C2 '

Vl = V2 = 0. If B _ 0, then V I is positive definite in Y2 andwhere Y3

and thus we have stability in these two variables. This means that if

Y2 and Y3 are initially small, then they remain small. From the second

integral we see that if Y3 remains small then Yl must also remain small.

Thus,

(i) E 1 is stable if B _ 0,

(2) E 2 is unstable if B > 0°

Stability of E 2

By symmetry we see that

(i) E2 is stable if A < 0,

(2) E2 is unstable if A > 0.

Stability of E3

Change the coordinates by using the following

Yl = Xl ' Y2 = x2 ' Y3 = x3 - m.

Thus, E 3 is at the origin in the new system:

Yl = AY2 (Y3 - a + m) ,

Y2 = BYl (Y3 - b + m) ,

Y3 = YlY2"

The characteristic roots corresponding to the linear approximation are

O, + 6 AB (m-a) (m-b).

If _AB (m-a)(m-b)I _ 0, then E 3 is unstable. If _AB (m-a)(m-b)_ < 0,

then we have a critical case and the nonlinear terms must be considered°
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An integral of the system is

- 31 -

2 2 2

V = - B (m-b) Yl + A (m-a) Y2 +AB (a-b)y_ = C,

where V = O. Thus, we conclude

(i) E 3 is unstable if _AB (m-a)(m-b)_ > 0,

(3) this analysis fails if IAB (m-a)(m-b)_ _ 0

Example 9, [_ Ei_i d Body ,Motion

This example is concerned with the use of a Liapunov function in

determining the stabilization scheme which will achieve zero spin fo K a

satellite in fLnite time. The time to reach zero rotation is proportional

to the square root of the initial rotational energy.

The equations of motion of the satellite are

I1_1 = (I2 - I3)_2 % + T1 ,

I2d) 2 = (I 3 - I1) c0 t 005 + T 2 ,

13_3 = (II - 12) C01c_2 + T3 '

where _lls the rate about the ith principal inertia axis, I i is the moment

of inertia about the ith axls_ and Ti is the torque input about the ith axis.

Let the candidate for the Liapunov function be the tota____lrotational _:

I

V =-2- (l ltOI2 + 12_j22 + I3_ _ ) •

The time derivative of V is

= + ÷ %



If we choose the input torques to be

then we find

17
T_ = 2

=- o<_--

- 32 -

dqi _

dt Pi '
(i = i, o.., n).

Define the l{amiltonian to be H = V + T. This will be our candidate for

a Liapunov function. By definition of T and V, we have that H is positive

definite with respect to the equilibrium point _, _ = _, O_. The time

derivative of H along the trajectories of the system is :

--- 2_/_ v (x(t)) -- /v (x(t_)) •

Thus the time to reach zero rotation is

2 /V<T - t,0 = oi Xo) ,

since V(O) = O at zero rotation.

Example i0 _ _I_ Sagrange's Theore_

Lagrange's theorem on the stability of the equilibrium point of an

n - degree of freedom system can be proved through the use of Liapunov functions.

Let qi be the generalized positional coordinates and Pi be the generalized

moments of this holonomic conservative system. The potential enerRy, V = V_),

is a positive definite function of q. The kinetic energy, T = T_,_, is a

positive definite quadratic form in _ with coefficients analytic in _I- The

equations of motion of this s_*m are:

d I _T I _ T= _V , (i = I' "'" ' n)_ _qi --_q--_
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_qi _pl

= hl D. _ DH
_0,

_qi _Pl _Pl _i

from the canonical form of the equations of motion. Thus, the equilibrium position

is stable.

Exmpl _ II, [_ Instability ,Theorem

Dealing with the same conservative system_we now prove an instability

theory. Let T be the same as in the previous example, but V now is negative

definite at the rest or equilibrium point. The canonical equations of motion

are as before:

qi --___H

l; i =-'_ IIm _

where H = T + V° We now expand T and -V in the following forms:

-v= %_) + ".+i_)+ "'"

ith
where U i _q) are degree homogeneous forms in _, and m >/ 2, and

2T

n n

--zI.. t+z
where a

for any q, then ___ a

are constants, and A_Q) = 0. Since T

is positive definite.

and

The candidate for a "Liapunov function" is

where V I has a variable sign.

n

V/ = _ p p ,

The time derivative of V I i8

P

P
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n

i = I
(Pi qi + Pi qi )

n _H _H

= _ (Pi _P---_--qi_q-_)
i=l

n "_.._T _ Um _ Um+l

= _ (Pi _Pi + qi _qi +qi _qi + "'')
i = i

+

n

--_ qj _ Aik Pi Pk "

i,j ,K = i _ qj

Apply Xuler's theorem on homogeneous functions to give the following:

n n

zl z+ _Aij
i,j = i k = I _qk

V I =
i,j = i aiJPiPJ

+ImUm + (m+ I) Um+l + ... ? •

PiPj I
+

The first bracketed term is positive definite with respect to P because the

n

" 7" qk _Aii _, can be madevariable coefficient ( Aij

K = i "_qk l

sufficiently small, as compared to alj , since the variable coefficient

is continuous in K and zero at K = 0. The second bracketed term is also

positive definite since the lead term, m Um, is positive definite. Thus,

the system is unstable since V 1 has variable sign in the neighborhood of

the rest point and VI is positive definite.

Example 12, [_ Instability Theorem

Again, consider the above conservative system, except now we assume that

V is indefinite in the neighborhood of the rest point. The system can be

shown to be unstable under this condition. The V - function used to prove

this is n

V2 = - H _ P_q_.
i = 1
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th

Assume that the potential V can be wrltten as an m degree homogeneous form,

v = - um , Um > = o.

In any region where -H = - T + Um is positive, UmmmSt be positive also

since - T _ 0. Therefore, we define the re_ion C as that region in the

n

neighborhood of the rest point where _ _iqi > 0 and
i = I

-a > 0. In region C, V 2 > 0 and on the boundary of region C, V 2 = 0.

The time derivative of V2 is given by:

n n nV2 = - _ _ aijPiPj + _ (Aij +
i,j = I i,j = i k = I

m_Um,

where H = 0. The bracketed term is non-negative and Um and -a are positive

in the neighborhood of the rest point.

Example 13, _ Nuclear Reactor Dynamics

This example deals with the kinetic analysis of a nuclear reactor. The

knowledge of the inherent stability of the reactor and the character of its

responses toc suddenly induced changes in reactivity are important relative to

effecting the optimal design of control systems. The system of nonlinear

equations for a class of homogeneous reactors, neglecting the delayed neutron

effects, is

d logV o< >0
dt _ ' '

dt _ P - Pe ,
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E = reactivity,

P = total power generated in the reactor > 0,

Pe = total power extracted from the reactor,

T = reactor temperature (T = _ at the _eactor's equilibrium point),

-o< = temperature coefficient of reactivity,

q_ = meanlifetime of the neutrons,

= thermal capacity°

The two operating conditions which will be considered are

(A) Constant power extraction: Pe = Po ,

(B) Newton's Law of Cooling: Pe = _ (T-To),

where Po > 0, _ > 0, To < 0, and To is the ambient temperature of the

surrounding medium.

The problem is to study the "stability conditions" of the equilibrium

point (P, T) _ (Pc, O) for operating conditions (A) and (B). The system

equations can be thought of as describing the motion of a sphere on a surface

where (- log P) is the horizontal component of "displacement", =<T is the

_C

corresponding "velocity" component, o____Tis the corresponding "acceleration"
"C

component, "C_ is the "mass", and (P - Pe) is the generalized "forcing"
o_

function. The candidate for the Liapunov function is the Hamiltonian or

total enerKy of the system° The generalized potential energy is

Log P

(P - ee) _(L°g P)

Log Peo

and the generalized kinetic energy is

2_ T
2

0



I

- 37 -

Thus, for this conservative system)the sum of the above two terms is a constant,

Log P
p

V = I (P - Pe) d (Log P) + _.__ T2 = Co
L/ 2_

Log Peo

where CO is a constant determined by the initial conditions.

For operation (A), Pe = Po = constant. Thus, the V - function becomes

V = P -Po - Po Log P/Po + oc__e T2 = Co,
2_

where CO > 0 in a n_ghborhood of (Po, 0). Since V

all t > to, then V is positive definite and V = O.

the neighborhood of (Po, O) if P( > 0 and for any T.

For operation (B), Pe = _ (T - To) where T o _ O.

becomes

> 0 and constant for

The system is stabl_______ein

Thus, the V - function

Log P

V = f IP - _T + _To? d (Log P)

Log Peo

or using

+ o_____6T2 = Co;

we have

V1 = V

i d Lo_ P I _'-_ T2d (LOg P) = - _T dt dt = _ dt

t

_. ToO

t

= Co __ _o_ _o T2 dtZ"

Since P + _To + _Zo Log _To + 2--_

is positive definite for P > 0 and all T and since V1 = - _ T2

'2"
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is negative semi-deflnite, the reactor is asymptotically stable in the

neighborhood of the equilibrium point (o _ To, 0 ).

Example 14, [_ HeteroKeneous Reactor

In this example we consider a heterogeneous reactor° The dynamic

behavior of a heterogeneous reactor with unit average power and consisting

of n - media with heat generated in each medium is given by:

n

dLO Pdt=" Tj , > 0,
i

n

(i = I, ..., n)

Xij (Ti - Tj),

where

P = P(t) = reactor power > 0,
stationary power

T i = Ti(t ) = deviation of the tem_rature from the equilibrium
temperature in the i_medium,

temperature coefficient of reactivitz,- i = mean life of neutrons

th

_i = heat capacity of i_ medium,

xlj

= fraction of power generated in the ith medium,

= thermal conductivity from the ith medium to the

jt-_hmedium.

Also, the effect of delayed neutrons is neglected_ Xij = Xji _ and

n

DO = I. The null or equilibrium solution is P = l, T I = T 2 =
( i

i

... = Tn = 0.
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The stability analysis of the null solution will be discussed for the

th
case of two media; the analysis would be similar for the n-- order reactor.

The defining equations are

d(Lo_ P) = _ _ITI ___2T 2
dt

_i'_i--?l(P-l)- x (Zl-z2),

E_2 --_ (P-l)-x (T2 - Zl),

where X = XI2 = X21 and_ i + _2 = i, The above equations are simplified

if we change the variables as given below:

Q-- _iZl +62T 2 ,

T = T I - T 2 ,

p-- p ,

Q
°<i +°<2 > 0
_i +E2

e"
T

The new system is given by:

•" :<zE2 - :<2EI

_'z +f2

= X lff2

d LoR P : __T T . _QQ ,
dt

d_ : P-l,
dt

d'f = I

and the null solution is

(r - 1)

(P, T, Q) _ (i, O, 0).
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A Liapunov function of the above system is formed in the following way:

P ' dt "_P =- P ,

thus,

dtdVl = P d(Lo_P)dt d(L°g P)_-6_Q Q Q + I_'6_dt I/_ I - _T'12/_2

=- _ -- d(Lo_ P) +

dt

= d--'_" ° _g P + 1/2 6--q

d(1/2%Q2#
dt

T2

+ dI_ _ i/_i _ 2/_'2 ",t

dt

2Q + _T T2

2(_i/61 -V2/62)

The null solution is such that at this point V I = i; thus, we choose

V = V I - i as a Liapunov function. If _I/_i _>V2/_ 2
and

_IE2 > _ _i , then V is positive definite and V is negative

semldefinite. Therefore, the reactor is locally asymptotically stable if

> .
(2) o< _ >o_

I 2 2 i

T

Example 15_ Eg] Homogeneous Reactor

This example is a simple stability problem of a homogeneous reactor

where delayed neutron action is considered.

= k-____n

The defi_ing equations are

+ kC

L

C = n_ /_C ,

L
= an - gT ,

K-= Ko -- rT , r > 0 ,
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n = neutron density,

c = delayed neutron precursor concentration,

T = reactor temperature,

K = reactivity,

, L , a , r = physical constants.

Since n and C are positive or zero, a candidate for the Liapunov function

is

where

V = n q- C q-

Thus, if Ko _ 0, all solutions -_st eventually reach the origin in the

nCT - space; thus, the reactor eventually shuts off.

Example 16, _ '_ewton Law of Coollng" Reactor

The kinetic equations for a Newton Law of Cooling reactor model are

= z n,'_.
L

= an - gT,

z = Xo--FI(T) --F 2(T),

FI(T ) = odd function of T,

F2(T ) = even function of T,

F2(O) = 0, a > O, g > 0, L > 0

÷
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Analyzing the stability of the equilibrium solution, (n, T) = (0, 0),

gives, "in the small", the following:

(I) for Ko < 0, the system is asymptotically stable in the small,

(2) for Ko > 0, the system is unstable.

If the nonlinear terms are now considered, Liapunov theory produces the

following results.

(i) Choose

V I = _ an

where

T

+ / IFI(T) - F2 (T)_ dt,

o

_1 = anK'o --giFl (T) + F 2 (T)_ T;

resulting in the following,

n = T = 0 is asymptotically stable for all initial conditions when Ko _ 0

and _F 1 (t) + F 2 (T)} T >/ 0 for all T. Also, if K > 0 for any temperature,

or if Ko > 0, and if _FI(T ) + F 2 (T)_ T ___ 0 in the neighborhood of the

origin along the T-axis, then n = T = 0 is unstable by Liapunov theory°

(2) Choose

V 2 = _an +

where

V2 = anKo

resulting in the following,

- aF2 n - g Fi<T>• ;

n = T = 0 is asymptotically stable for all initial conditions when Ko _ 0

and FI(T ) T _ 0 and F2(T) >/ 0 for all T. Also, if K > 0 for any temperature,

or if Ko > 0, and if FI(T) T _ 0 and F2(T ) .__ 0 in the nelgh_rhood of

°
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the origin along the T - axis, then the "shut-down" solution is unstable.

There are other examples of Liapunov theory being used in the reactor-

field, such as, references _3, 14, 15_ .

Example 17, _I,!_ Continuous Medium Reactor

This example considers the dynamic stability of a continuous medium

nuclear reactor. The Liapunov theory of ordinary differential equations

is not directly applicable but the authors use a Hamiltonian, a '_iapunov-

like" function, in their analysis; thus, their example is presented here.

The physical assumptions considered in their problem are listed in

reference _ . The problem is the continuum extension of the n-distinct

media problem considered in a previous example. The governing equations are

d LoOP J
dt = - o_ (x) T (x, t) dx,

dT(x,t)

dt

where the thermal conductivity, X, satisfies

0 _ X _ constant

_2T ,

c<(x)

P

T

<< i,

>i 0,

>i 0,

-- power of the reactor,

= temperature,

and the functions =<(x) and _ (x) are of the same order; this means
%

physically that the heat is generated predominantly at locations where

the local negative temperature coefficient is large. The equilibrium solution

is (P, T) _---(I, 0). Thus, the problem is to find the sufficient conditions



must satisfy
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for damping the power oscillations of the reactor in the neighborhood of (i, 0).

Because0 < X < < I, the first approximation TI and PI for T and P

t

i,,
For this approximation the motion about the equilibrium point can be

characterized by a '_{amiltonian" or a '_Liapunov function", H I , which is

constant in time and is defined by

H I = 2 dt +
I P1 - Log PII dx,

where the first term on the right is a generalized kinetic energy and the

second term a generalized potential energy. From the first "system" equation

and the expression for TI, the time derivative of HI is shown to be zero.

The second approximation is obtained by substituting T 1 into X _2T

2
of the second "system" equation; thus,

X

The Hamiltonlan, H 2

= x

, is constructed in an analogous man_er and is positive

definite. The time derivative of H2 is

t x

dt (PI - i) dt °_(x) _ (x)

where the term in

"system" equation.

dx_

is inherently negative because of the first

The integral in _2 can be written as:



x

(x) dx - lira
h-_o

+

x
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x

x

where the final integral on the right dominates the sum of the other two

integrals because o< (x) and _ (x) are of similar ordering. Thus,

X

(x) (x) dx --_0 and H2 -_ 0,

which implies that the oscillatlons of the reactor about (I, 0) are

nonincreas ing.

Example 18, _5] _¢t_on of ,a Projectile

The stability of the rotational motion of a projectile is analyzed by

Chetaev's method of linear combination of first Integrals. Let _ be the

angle which the axis of the projectile forms with its projection upon the

vertical plane of the line of fire. The angle o_ is measured between the

above projectlon and the trajectory of the center of gravity. It is

assumed that the center of gravity moves linearly and uniformly. Other

terms in the equations of motion are:

C = polar moment of inertia

A = moment of inertia about transverse axis through the center of gravity

n -- projection of angular velocity

e -- distance from c.g. to center of pressure

R -- forward resistance.
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The equations of motion are

2
A _ + A _ sin _ cos_ --Cn _ cos _ = e R sin _ cos_,

A _cos _- 2A _sin _ + Cn _ = eR sin_<..

The equilibrium solution under consideration is oi = oi = _ = _ =

Thus, the above equations can be considered the equations of distributed

motion about the equilibrium position.

The first integrals are the energy integral,

A .2 .2 2

F1 = 2 (@ +oc cos@ ) + eR (cos_<cos@ - 1),

and the momentum integral,

F 2 = A ( _sin oK. -- c_CoS _ sin _ COS o<.) +

+ Cn (cos olcos _ - 1).

Oe

Both dFl and dF2 can be shown to be_ero; thus F I and F 2 are constants,
dt dt

that is, first integrals. Neither F I nor F 2 is definite with respect to

sign. We now form a new first integral:

V = F I - _ F 2

= 1/2 Ag< + 2A%_<@+<Cnk--eR)@

f.+ 1/2 A_ - ZA_ ol+ (_X-- eR)o< +
rd

+ terms no lower than 3 order o

+

V, locally, is positive definite if the quadratic forms are positive definite°

Therefore, for stability we require that

C2 n 2 -- 4A e R > 0
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which gives the lower limit of the angle of rotational motion of the pro-

jectile such that the axis will follow the tangent to the trajectory of the

center of gravity. We have unstable motion if

22
Cn m4AeR d0.

Example 19, _ Liquid-Filled Gyroscope

In this example, the necessary and sufficient conditions for stability

derived for the motion of a gyroscope containing an ellipsoidal cavity

filled with an ideal, incompressible liquid. The terms involved in this

problem are:

where

LI, L2, 0 = Components of the angular momentum of the moment

of the gravity forces,

p, q, r = Components of the instantaneous angular velocity

of the gyroscope,

PI' ql' rl

AI, el, A2, C2

E = Eccentricity of the ellipsoid,

a=b, c are semi-axes, and A 2 = (i - 6)

M = Mass of the liquid in the cavity,

P

h

= Components of 1/2 rot V , where V is the rectilinear

velocity,

= Moments of inertia of the liquid and solids.

C2 ,

= Weight of the system,

= Distance from fixed point to c.g.,

= Direction cosines of the line of action of the

weight vector in the given coordinate system,

L I = Ph _2 and L 2 =- Ph _I •
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The equations of motion are

Pl = rl {_ ql- (i +E)q_ ,

ql = - rl _ _ Pl- (i +_)p_ ,

r I = (I - _) (plq - qlp),

AlP + A2_ I + q (_'ir + qr I) = LI,

Alq + A2q I -P(Clr + C2r I) = L2,

Cl_ + C_.rl - A2 (Plq - qlP) = 0,

2 p 3,

For the case of a very thin shell, the shell's moments of inertia are neglected.

Thus, assuming that the fixed point is the c.g. and that

A I =
5

2

(a2 + E2) , C I = 0,

2 2
C 2 = 2 M a , A 2 = (i -G) _ ,

5

the middle three equations, above, reduce to

p =-_. _ )r 1 ql(1-_) + E q ,

: f otq

The first integrals of the system are

i + _ 2

FI = p2 + q2 _ _ r I ,

I + _ rl 2
F 2 = pl 2 + ql 2 + i - 6

1+2 6
, r12"

F3 = 2ppl + 2qq I + I -



Eliminating r I gives

V1 =

V2 =

The linear combination

is positive definite if
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p2 + q2 + _ ( pl 2 + ql 2 ) ,

i+2_2pp I + 2qq I -- i + _ (p + q2) .

V = V I + _ V 2

and V = 0,

4+5_

(i +E)2 > O)

This gives the necessary and sufficient conditions for

stability)with respect to the variables p, q, Pl, ql) °f the motion

of the gyroscope about its vertical position of equilibrium. These

conditions are given as

or

(1) __ > Oj(a2> c2),

(2) q<- 4/_(c 2 > 9a2).

Example 20, _ ..... G_roscope on Gimbals.

This example considers the sufficient condltionsfor stability of motion

of the regular precession of a gyroscope on gimbals. There is assumed to be

no frictional forces on the gimbal axes, only gravitational forces are

present. The important terms are

/=
A,:B, C =

AI, B I, C I =

angle of nutatlon,

angle of precession,

angle of rotation of the gyroscope,

principle moments of inertia of the gyroscope,

principle moments of inertia of the inner gimbal,
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A2 = moment of inertia of the outer ring

p = weight of the gyroscope and the inner ring

(0, O, Zo) = coordinates of the center of gravity.

The equations of motion are

C d__ ( _' + _'Cos _)
dt

= 0,

(A+ AI)_" (A + B 1

P_oSln _ = 0,

d-_ (A + B1) lin _ + C( + Cos _ ) Cos_+ C 1 Co_

The first integrals for this system are

.2

+ A2_ =

K = (A + BI)_W/n2_) + C( _'+ _Co_)Cos_+

+ ci_cos2_ + A2p,

h = CA÷A1)_2 + (A÷ BI)_

÷ _(__os_)_ + _?÷
Consider the equilibrium condition defined by:

=Oo=consta.t

= _ _=o=_=_

where

= constant

(A + BI - CI)_ Cos @_ - C cO_+ p _s sin _o " O.

For regular precession, _ols not equal to 0 or -_-

*
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We now apply the following transformation to the equations of motion:

r =_+ _3 -

The first integrals corresponding to the new coordinates,

Vl

-p + higherorderten,

+ higher order terms,

V3 = _ 3 = constant,

where

. = (A+ B1 - Cl)-d'b(Cos2eo- I_..2@0) ,

E = (A + Bl)sin2_o + CiCos2_o + A2,

F = (A+B 1 - cI) Cos Go sin_9o.

A candidate for a Liapunov function is 2 2

C V 3

V = V1 - 2 _V 2 ÷ 2C( _Cos _o -60) V3 + A + BI -C_

where V = O. V is positive definite if

D _- C _3_Cos (_o+ p _Z.Cos _ <.0;

this is the sufficient condition for stability of the regular precession.
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If we now use the equation given above, namely,

F _f_2 _ c uO_sin (Do + p _o sin _o = 0,

to define _o , the stability condition for the regular precession of a gyroscope

on gimbals is

A + B1 -C 1 > 0.

This stability is with reference to _), _, _ and r.

It can be shown from the above Liapunov function that if _o = 0,

the necessary and sufficient condition for stability of the unperturbed

motion is

(A + B I _ Cl ) _j_2 . c_+ p e_ _ 0.

The unperturbed motion in this case is the uniform rotation of the outer

ring about a vertical axis with angular velocity _J_ and a uniform rotation

of the gyroscope with angular velocity _ .

Consider the above case, _ = 0, with the friction of the gimbals

being taken into consideration. The equilibrium solution is

The transformation equations are

s;?,_; =_,, :

and the Rayleigh dissipation function is

2 2 2

2_ : a + b + c + 2e + 2f_ _iI 2 2

where the constants a, b, c, e, f, and g are such that f, is positive

definite in _ i' _ 2' _ Thus, the variational equations for

the perturbed motion are
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(A 2 + C + C 1) 2 + C _ = . (g _1+ b_ 2 + e_)_

We now consider a Liapunov function of the same form as before:

2

•
Thus, W > 0 and W _ 0 if

c l)
2

+

CA+ BI-Cl)_ 2- C_+ p _o<_(_ < 0

for sufficiently small _ • Then the motion, _ = 0, _ = O,

--_ and _'-- O0 - _ which is stable without friction becomes

asymptotically stable when dissipation forces are present.

Example 21_ [18_ Motion of a Ti_pe - To_

This example considers the stability of a "tippe - top"; that is,

a top with a spherical base whose center of gravity is below the center of

curvature. _he important terms are
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p, q, r = projection of the instantaneous value of the angular
velocity on the moving coordinate system,

_2' _3 direction cosines of the direction of the force of

gravity, mg,

A m B, C = principal moments of inertia of the top,

L.o = angular momentum of the top about the c.g.,

dx m velocity of c.g. = (u, v, w),
dt

a = radius of the sphere,

= center of the sphere to c.g.

The equations of motion are

+ (c- A)qr +

A_ + CA - C) pr + m(a _/_j -_)

y-C_ + m a i J- m a 2 u = 0,

w = a (_2 P " _ lq),

u = a _3 " _ _i g - a _2 r,

- m (a _3 -_) v =m g _ _2'

- m a _l_r_ - m g _ _I'

From these equations there results one energy integral, two momentum integrals,

and the relationship

_12+ _22+ _32 -- i.

Our problem is to consider the stability of rotation of the top about its
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vertical axis; that is, the unperturbed motion is

u =v =w = 0,

p=q=0,

r = r o = constant,

_3 =1.

The transformation equations giving the perturbed motion are

or

4= _, _i - 2 _2-=_ t3, _- _"

From the perturbed equations, the first integrals VI, V2, V3, V 4 are formed:

} ',--.a' &,, r,

) * c_jg'V 3 = C - A) (C + m a ) - C m 3 +

V4

+ 2 roE(C - A) (C + ma2)- Cm _2___ _"3 -- 2 _'4 m a to, E c(a-_) +
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The choice for a Liapunov function is

V = V I _ _ V 2
2

+ _V3 + _V 4 + _ V4'

where if

2
2(rag {., +7,J)[C - A + m _(a- _)_ -- m a ro E a(A - C) + A Li - m C,2(a -_0

2 E 0a ro ( A - C) C + m a (a -_

and

2C_r 2- (a -_)_m _ (g + a ro ) +

2

aro<<A- C> [ c + ,,,a (A - t>]

_he linear terms in Y drop out. V is positive definite and thus the top is

stable about the vertical axis if

(1) A 2 > 0,

(2> 4 _A I - A_ >0,
2

(3) A2A 4 - A 3 > 0,

(4> 7,_ > O,

(s) A >o,
,'1-

where

At = A + _(a-b 2 ,

2
A 2 = C + 2 m a + /_ C [C - A + m (a2

2A 3 = Ca E_ - 2_m r e (a- _)J ,

2 2

A 4 = r o m a (I +_A) + 7_- 4_ ,

As = a [- 2 _ r ° (a-I,>(1 ,/_c> +

+ A (2tim r e a + /_ )] •

- ,
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Example22,  tionofa  rostat

The problem of a gyrostat consisting of the rigid body T I and the

rotors T 2 , whose axes are fixed in TI, is now considered. The particular

problem being analyzed is a free gyrostat in the Newtonian force field.

Let 0 be the origin of a fixed Cartesian coordinate system, _ '7 ' and
k

coinciding with the center of attraction. Thegravitation gyrostat

moves in a Newtonian central gravitational field, and the axes of the

moving coordinate system x, y and z coincides with the principal central

axes of inertia of the gyrostat. The terms used in this problem are:

A, B, C = principal central moments of inertia

kl, k2, k3

p, q, r

U

M = mass of gyrostat

T ---combined ._v,_m TI and To

mass of T

= direction cosines of the radius vector

= components of angular momentum of T2

= components of angular velocity of T I

= direction cosines between xyz - system and _ -axis

= Newtonian potential.

For a free gyrostat we have A = C, kI = k3

where k(t) is a bounded continuous function of time.

for U and the motion equations are given by

u= -
2R 2 '

= 0, k 2 = k(t),

Thus, the equation
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Ap + (A- B)qr - rk(t) =
R3

B _ + k(t) = 0

(A - B)_ 3 f_'2,

A _ + (B - A) pq + pk(t) = R_ (B - A)_2 TI.

The first integrals are

Bq + k(t) = H = constant,

2 2M + + + A (p + r ) -- 2U = constant,

which is the energy integral, and the next equation is the angular momentum

integral,

(ml + k(t)) _2 + Ar Y3 = constant°

Further, we have the trivial relationships

2 2 2
_l +'I"2 + "g3-- l,

3 = 1.

The introduction of spherical coordinates, whose origin coincides with the

center of mass of the system, admits the following form for the particular

solution of the equations of motion:

-i

p = r = 0, q = B (ll - k(t)),

 3:0  2:1

2= 0, _71= si_(t), _3 _ cost(t),

= _L)-- q(t).

These equations describe the motion of the center of mass on the circular

orbit_wlth radius Ro and with constant angular veloclty_; and they describe the
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rotation of the gyrostat about its axis of symmetry with angular velocity q_

while the rotor performs a prescribed motion such that Bq + k(t) = H.

We now determine the Liapunov stability of this non-perturbed motion.

First we change the variables by applying the following relationships

to the equations of motion:

(2:l+x2 R = Ro + x3_:_+ ;4

From the transformed equations we get the following first integrals

VI = MRo _ + M_ - MRo +

_2 2 _2 + 6 (B - A)_ x3+ MRotO + Ro R_

__ " Ro 5 x3

.-- 2,2
+ 4MRoUJx3x 4 + _a<o x4 + 2MRo _4 +

+

2

,5_(B _-3A) q_ 2+

_e

+ A (p2 _ r2) + higher order terms = constant,

v2 =_ 44 + 2mo_x3 + 2_ x3;4+M_x2 +

-MRo2_D_-+9 A (p \/_I + r _03 ) + H x2 + xI +

+ XlX 2 + higher order terms = constant,

V 3 = x I = constant, V 4 = _12 + _32 + x_ + 2x 2.

The stability of the non-perturbed motion is investigated by constructing a

Liapunov function by Chetaev's method. The candidate for a Liapunov

function is

W : V I - 2_0_2 -V 3 ) + H OOV 4 + AIV22 +_2V32,



where 1 and 2 are consta_ots

and if all principal diagonal minors of the determinant of

c_,j = cjl
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W is a positive definite form if

> A ,H_ A_ J

Cij are

i, j = 1,2,3,4,

ell > i_ Ro2_ 3 M CO2 3 (B-A)

positive:

2 3
c12: 2_IM Ro_, c13:2_ IMRo __,

2 2 4

C14 = 2 _ IHRo_, C22 = MRo + _ iM _ ,

0_:__ _,_4 : _ _o_,_ = __ +_i__,

C34 = - U)+ _] H,

In most practical cases _land _2 can be so chosen such that the conditions

Example 23, _ I_iquid-Filled Rockets

This problem is conae_ned with the stability studies of continuous media

with respect to a finite _umber of parameters which describe the motion

through integral relationships. Examples of these parameters could be the

coordinates of the center of gravity of a bounded volume of continuous medium,

or the projections of the linear momentum of the medium on certain axes.

The time variation of these parameters is described by ordinary differential

equations. The stability of the motion of a continuous medium with respect

on Cij are satisfied. T_s, the non-perturbed motion of a gyrostat with one

rotor, whose angular momentum satisfies the condition

Bq + K(t) - A_J > O,

is stable.
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to the above mentioned parameters will be called the conditional stability

of the motion of a continuous medium.

The particular example being considered is the stability of motion of

a rotating solid, with a liquld-filled cavity, with respect to parameters

describing the motion of the solid and the projections of the angular

momentum of the liquid. This solid is a free solid with a completely or

partially llquid-filled cavity. The liquid is ideal, non-compressible and

homogeneous. Also, the central ellipsoid of inertia of the solid is an

ellipsoid of revolution (A = B, C), and the cavity is a body of revolution

whose axis coincides with the axis of the ellipsoid. If the liquid has a

free surface, the pressure at the surface is assumed constant. The liquid

is such that its velocity and pressure are continuous functions.

In stability problems dealing with liquid-filled bodies, we are inter-

ested mainly in the question of the stability of the motion of the solid

body. The question of the stability of the liquid is only important in

so far as it effects the body as a whole. In this connection it is natural

to consider the question of the stability of motion of our system relative

to all variables which characterize the motion of the solid body and the influence

on this motion due to the motion of the liquid. This leads to the conditional

stability mentioned above; that is, the stability relative to certain ones of

the variables but not to all of them that determine the motion of this mechanical

system. (There are an infinite number of variables because the liquid is a

continuum.)
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OIXlYIZ I = fixed axes; O, at the center of mass

0 X Y Z = axes moving with the solid

_2' _3 =dlrectiOn cosines

T I = kinetic energy of the solid

T 2 = kinetic energy of the liquid

Vl, v2, v3 =velocity of point 0

_0 i,_2,003 = angular velocity

M I = mass of the solid

Vx, Vy, v z = velocity of fluid particles

= volume of the liquid

gl' g2'g3 m momentum of the liquid

= density of the fluid

LI, L 2, L3 =moment due to air pressure

U = - a _3 = force function of the air pressure.

It is assumed that the center of mass of the whole system is in

rectilinear motion with constant velocity; this is the well-known approxima-

tion to a small segment of the flat trajectory of a missile. For this missile

it is assumed that only the overturning momen_ of the forces of air pressure

act.



°
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The equations of motion of the system 21 relative to the center of

mass are

A_I + gl + (C - A) C02603+_ 2 U3-_J3_2= a _2,

A_2+ &2+ CA 0)%%+% gl_ g3° a_,

dt _ + _ + % _:-_3 +%

-C03 EVy+ v2 + 6£)3x- C01_ ] =- i__. _p ,

d _x

d _ + v 2 +O..)3x-(,#Jl_ 1 -l-_31v + v I +#._-013 y1

-_)i_ v_ + v3 + C01y- _J.J2x_

F
d

Lv_ + V3

c"-

-_2L vx +Vl

9v__x + _-_ +
9x _y

= - --i _ ,

9y

'l
+_2 _-u--)3yl= - _I 9__

_J

_V___ = 0 ,

Applying the general theorems on relative motion of a mechanlcal system

about its mass cen&er, we obtain some of the first integrals of the equations

of motlom of a solid with liquid in its cavity, The total kinetic energy of

the relative motion of the system is

T I + T 2 _3 _L+ a = constant,
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The integral of areas is

where

and

Since

g3

%*

A = B and L 3 = 0, then_J3is a constant

and

o

_ _ J_ (x2 + y2) d't" = constant.g

Now we consider the stability of rotation of the solid and the correspond-

ing steady motion of the liquid in its cavity at the equilibrium point:

U.)l= oo2= o, r-03=(.O,

_1 = _2=_ -- o,

For the perturbed motion we shall substitute

3= =

gl = g2 = 0, g3 = g"

_3 = I "P_ •

Thus, the first integrals given above can be written in the following form

for the perturbed motion:

Vl - Ml: (_'12 ,_22

+ c (_2.,. 2_>

v2 = CA_ + Sl_

+_2 ) + A (cO12 +uo_ +

+ 2T 2 "1- 2a_,

constant.
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= HI (_'12+z32+_32) + A (_2+_22) +

where S is proportioned to the greatest principal moment of inertia of the

liquid about O. By LLapunov's inequality

2 g2 + 2T 2 Sgl + g32 <

we have that HI__.VI = constant.

Thus, as a candidate for a '_iapunov function" we consider

V = H I + 2 >_ V2 " (a + C uh_ + g_) V 3 +

- 2c(e+%)v4
2

+ c(c-A) v4 ,
A

where _ is a constant. By Sylvester's criterion the quadratic part

of V is positive definite if there exists a _ such that

(I) (A + s)k2 + (c _+ g)_ + a < 0.

The inequality (i) is possible if the left hand side has two distinct real

roots _ 1 and _2 | that is if

2

(2) (C 00+g) -- 4 (A + S) a > 0.

The function V is positive definite in all its variables if (2) is satisfied

and if

o> (g/s + ),>_7 >_o

where _i < >_ W. _ 2 • By the theorem stated in the theory part
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of this section, and by the strength of the following inequality

v _ Vl + 2 _ v2 - (a + C_ + g_) V3 +

C(C - A) 2

- 2C (_'t'_) Vq + A V4 ,

we conclude that the unperturbed motion of the system is stable with respect to

Example L24, F22, 23, 2_ MaAnetohydrodTnamics

In reference _2_ , Bernsteln and others proved an energy principle for

magnetohydrodynamics based upon the series expansion in terms of small dis-

placementsj _ _, t) , of an ideal conducting fluid along a complete

,_s_ofno_1vi_io_,.I__ _=_#_,_o_ _d __uk _=o_u=_

proofs of the stability theorems of the equilibrium configurations of an ideal

conducting fluid by using Liapunov functions.

In @_ , Bernstein started his derivation from basic fluid motion equations

and Maxwell's equations in Electromagnetic field theory° The fluid was des-

cribed by the Lagrangian description; thus, all quantities in the above basic

equations become functions of r_.oo.For the small displacement analysis, the

displacement _ of any fluid particle, ro, at any time t was expressed as

= ro + .f._,t) ,__,0) = o.

The resulting equations of motion for the small displacements were finally

reduced to

where F must be a self-adjoint operator. That is, for any two vector fields

i and _ the following equation holds, the integration being over the entire

volume in question,
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The problem of Bernstein was based on the fact that it is possible in

principle to follow in time any small motion about an equilibrium state in

which the fluid velocity is zero. The central problem is then to determine

for a given equilibrium configuration whether such a small motion grows in

time. If the details of the fluid motion are not needed, then all one has

to do for stability studies is to examine the sign of the change in the

potential energy, which is a functional of _ . The theorem considered

in _ says, "the system is unstable if and only if there exists some dis-

placement _whlch makes the change in potential energy negative."

In reference _ , Stepanov and Khomeniuk, by the direct method of

Liapunov, show that an equilibrium state of an ideally conducting fluid

is unstable if there exists displacements of the fluid _ (r) from the

equilibrium position for which the potential energy of the system decreases

(U _ 40 ). These authors use the same equations of motion as

Bernstein:

where F is a linear self-adjoint operator. F is defined by

_F .  Ci.Vp) +

+ (rot rot _ x H_) x H_ + rot ×

where,, p , H are equilibrium values of density, pressures of fluid and

magnetic fields, and _ is the adiabatic exponent.

We assume that the fluid occupies a finite volume V and is bounded by

surface S; the density _ and displacement _ are zero on S.

The equation _ ___" =_F _ has an energy integral

E = T +U = constant,
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where

It is clear that V

I ll

T_ >_0.

For any r in V let m_ (r) be twice continuously differentiable and let

be a solution of _ --_ _ satisfying

dr

Definition

The equilibrium solution is stable ( _ = _ = 0 ) if for any

I, _2 > 0 may be found _i, _2 > 0 such that if

I1_°_11_ _ _ ,._ (1_11< _ ,then

I1-_<< :,-_ _ _ _11< _,, IIS _ ,,_ , <<,=,-_<___11<
fort >j 0.

Definition

The condition of equilibrium is not stable if there exists at least

one set of _ i, _ _ > 0 such that for anY_l, _2 > 0 there

//_4.// g_ 2 , such that at least one of the following inequalities

hold:

II " II_<<,_,-.t>_,-,Lc_ >.._,

IIA<<,__,_<.o,_.C<.>//>.-_,
for at least one value of t >i 0.
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Theorem i

If there exists a _ _ such that U _ < O, then the equilibrium

solution( i --i --0>isnotstable.

Proo.____f(Outline)

Let the V function be defined by

-
and the time derivative is given by

• ?.V=2 -U .

By hypothesis, V and V can have the same sign in the neighborhood of

= _ = 0 . The theorems on instability then conclude that the

system is unstable.

The next theorem investigates the influence of viscosity forces on

the stability of the equilibrium solution. The equations of motion in

this case are
ee •

where the force of viscous friction fi equals

i, k, £ = I, 2, 3j C 5_ _ k _ b).

The first and second coefficients of viscosity are _ and _ , and

vi = _ i . From the above equation of motion it is very easily

found that
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where

dr

= 21--_v_ _ +_i k - _ Si_k_x_2dr +_v_[_v--Y_]2dr°L_x_J

Theorem 2

equilibrium solution is not stable even in the presence of viscous forces.

Proof (Outline)

We assume that the condition of equilibrium is stable.

El, _ 2 > 0; then there exists_l, _2 > 0 such that if

II±IIII_)II < _I ' _ _ _ 2 , then for t

Assume the V - function takes the form:

v v

1 / F_h]_
V

f "If satisfies the motion equations, then V = 2(T - g).

_ * and _* such that (_- - T - H > 0)and (V > 0)

_hoos e

>i O,

G 2"

Since for t >/ 0,

There exists

 >II

dr



- 71 -

then there exists a _ > 0 such that for t >I 0

j,23a,es.a,,ert aoo.econ.t t
On the other hand, since for t >I O,

We find that for t >I" 0,

dV >/_ _ 0 for _* and _*
_-{ ---o _-o "

Consequently, for t _ , V _ _ . This

contradicts the boundedness of V, thus the equilibrium is unstable.

From reference 2_ we obtain the theorems dealing with the stability

of the equilibrium solution. We are still dealing with ideally conducting

fluids. The motion equations are asbef0re:

The solution of this equation which satisfies the boundary conditions and

t = O, is denoted by _ (t r, _ (r) _ (r)) We assume that the
o o

solution is twice continuously differentiable with respect to Xk, defined

for all t _ 0. W, T, and g are defined as in the previous reference, _ .

We now define two metrics which will be used to define stability in

the above system:

= dr + _<
=I

V V

_C_2 dr
V

dr ,
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where =_ is a constant. In the definitions which follow the numbers

> 0 and _ > 0 are always bounded from above by a positive

number _'- .

Definition

An equilbrium position is stable, if for any _ i,

exlsts?l' _2 > 0, such that if

I 2 ,

then for all t _i 0

Definition

2 > 0 there

An equilibrium position is unstable, if there exists at least one of the

numbers _ i, _2 > O, so that for any _i _ 0 and _2 > 0, there are

always such data

that at least one of the following inequalities

holds for at least one value of t _ 0.

Definition

The functional V _, i _ is called positive definite with

respect to the metric _ [_, i_, if V >i 0 for all admlssible
,Q

--i and ___ ; and if for any _ >o, there exists _X(_)1_>e0 such that V >i _for any

An example is the functional T ._ i(_)_ , kinetic energy; T is

positlve deflnite with respect to the metric _2 [ i _
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Wenow consider the conditions for stability of the equilibrium posi-

tions of an ideally conducting inviscid fluid (_ = _ = 0).
Theorem 3

In order for an equilibrium position of an ideally conducting inviscid

fluid to be stable, it is necessary that U(___) >/ 0 for all admissible _ (r).

Proo._____f(Outline)

The proof is a contradiction proof; that is, U (_) is assumed negative

for some _ which is nonzero. The V - function which is used is

The remainder of the proof is similar to theorem io

/i// dr.

Theorem 4 (Sufficient Condition)

If U(_ is a positive definite functional with respect to the metric

f i_, then the equilibrium position of an ideally conducting inviscid

fluid is stable.

where

Proo._____f(Outline)

This proof is also a contradiction proof. It is shown that for any

_, , _E > 0 and the corresponding _i > 0,_2 >0 , the following

inequalities lead to a contradiction and consequently the system is proved

to be stable: for some t = _"
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The vehicle used in arriving at the contradiction is a V - functional

defined by

where T and U are positive definite functionals with respect to the metrics

_i _!_ and C2 _'_ , respectively.

Theorem 5

If U_ is a positive definite functional with respect to the metric

_i [i _ , then the equilibrium position is stable with viscosity present.

Proof

The proof is similar to that of theorem 4 and the same V - function is

used, as well.

Example 25, _ Van der Pol's Equation

We consider the equation

j. 2

x+E(I - x) _ + x = O,

or in state variable notation

Xl = x2

x2 = - x I - d(l - Xl 2) x2.

Since this system does not possess a time-independent integral, a "nearby"

system is considered, namely

. 3

Xl = x2 + _ (Xl - Xl ) + f4 (Xl' x2)
I

3

2

_2 = - Xl - _(I - x I ) x2 + f5 (Xl' x2)"

This "nearby" system possesses a time-independent integral if

%f4(xl,x2) _f5 (Xl, x2) = O.
+

"_x I _x 2
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To guarantee that the new system is "nearby", we must determine f4 and f5 such

that the cross product of the vectors (Xl ' x2' O) from the old and new systems

is positive semidefinite. This cross product (third component) is

X* =_x_ (i - x +6XlX 2 (I -xl/3)(l -xl ) + x2f5(x I' x2) +

2

+ xlf4(x I, x 2) +6(1 - x i) x2f4(xl, x2)"

In the neighborhood of the origin, X* is positive semidefinite and

-_x I + _ =

Ca,&&U. _ .JLJLII., I_

f4 (Xl' x2) = 0, 2

then

* 2 2

_= _x I (i - xI ) ,
3

2

0 { Xl L__ 3.

Therefore, the nearby system becomes

• 2
x I = x2 + _ (Xl - xI

3

x2 = _ x I

and its first integral is

2
- _(1 - Xl2) x2 -

2

h (x_, x2) = xi +

2

(xi - xi___3) (i - xi),

Ex2 + _(x I -x13)] 2



Let h be the Liapunov function for the original system, where for this

system

• 2 2
h = - 2 _x I (I - xI )

3

Thus, the original system is asymptotically stable if e >0 and IXll _

The region of asymptotic stability predicted by this analysis has the closed

boundary defined by

2 Ex ]Xl + 2 + E (xI - Xl 3)

3

=3

for any given positive

Example 26 1 _ A Symmetrical Oscillator

The describing equation of the system is

3
+ x - x =0,

or in state variable notation

Xl = x2

3

x2 = - Xl + Xl - dx 2 .

This system is symmetrical about the origin in XlX 2 - space. In this case

the nearby system is

Xl = x2 + dxl + f4 (Xl, x2)

x2 = - Xl + x_ - dx2 + f5 (Xl' x2) '

where _f4 + _f5 = 0. The third component of the cross-

product (as defined above) becomes

* 2
X = dx I (i - Xl2) + dmXlX2 + Xl(l - Xl2) f4(xl, x2) +

+ dx 2 f4(xl , x2) + x2f5(xl, x2).
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The positive semideflnieness of X* and the conditions on f4 and f5 are satisfied

if

2
f4 ( xI, x2) = 0, f5 (Xl' x2) = " d xI .

Thus, the nearby system becomes

_i = x2 + dxl

x2 = - xI + x_ - dx 2 - d2Xl ,

whose first integral can be found to be

hl(Xl, x2) = x12 E (i +d2)--XlT] + 2d XlX2 + x22 •

We then consider h I to be a candidate for a Liapunov function of the original

system, where h! becomes

2 2
hl =- 2d x I (I - Xl).

Therefore, the original system is asymptotically stable if d > 0 and

2

xI _ I. The boundary of the domain of asymptotic stability given by this

method is

x I (I + d )--x + 2d XlX 2 + x 2 = + 2d .
-- 2
2

We could also choose the unknown functions to be

f4(xl, x2) = 0

giving

f5(xl , x2) = - d2Xl - dx t ,

9:
2 2

X = dx I (i - x I - XlX2) .
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The integral corresponding to this choice of f4 and f5 for the nearby

system is

h2(xl, x2) = x I (i + d ) - xI (I - d + 2dxlX 2 + x 2 •

T

The cross product is positive semidefinite if d > 0 and I xl] < I ;

thus, the resulting boundary of the domain of asymptotic stability of the

original system is

x_ _(I + d2>- p2)_ d d++x22<
2

In conclusion, we can take the set-theoretic union of these two domains of

asymptotic stability and use this union as a better approximation for the

actual domain of asymptotic stability of the system.

Example 27, B_ A Nonsymmetrical Ose_llator

The system's equation is

x" + ax + bx + x2 =0, a>0, b>0,

or in state variable notation,

Xl = x2

92 = . bx I
2

- x i - ax2.

The nearby system is defined by

Xl = x2 + axl + f4 (Xl, x2 ) ,

x2 = - bxl - x2 - ax2 + f5 (Xl,X2),

[ Af57_f4 +

_ _x-_ _-gj _0 • As in the previous examples

we choose f4 and f5 to satisfy certain conditions; thus, we have

f4(Xl,X2) = O,

2

f=_x_._" ,X._.-= - a x i
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where

2
X* = ax I (b + Xl).

Thus, the integral of the nearby system and the Liapunov function of the

original system is

h (x 1,x2_) ; Xl + _ + axlx2 +

where

= - ax_ (b + Xl) and xI > - b.

The boundary of the domain of asymptotic stability is given by

2 2 2 2 b

(ax I + x2) + x I (b _-_Xl) = b (a +5),

xI _-b , 0 _ x 2 L__ 2ab.

It is noted that if a = 0 we have a domain of stability and not asymptotic

stability.

Example 28, _7] A Nonlinear Compensator

The state space description of this system is

where d > 0.

- sgn (xI + x2)

Xl = x2

x2 = " Xl + x_ +dx 2

The nearby system is given as

Xl = x2 - dx I + sgn (xI + x2) + f4(xl,x2),

X2 = Xl

From the cross product term we choose

f4(xl,x2) = x 2,

2

3

+ x I - sgn (xI + x2) + fS(Xl, x2).

f5(xl,x2) =- (d

3

+ i) xI + x I ,
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which gives

2
X* = i - d(x 2 + x2) + (i - d) (x I + x2) sgn (xI + x2) +

4 3

+ dx I - xI sgn (x I + x2).

The integral of the nearby system and the Liapunov function for the original

system is

+d

h(Xl ,x2) " Y
2 4Xl xl dxlx 2 _" (xI + x2) sgn (xI + x2) +x

2

For d = I, the domain of asymptotic stability can be shown to be (as given

by this analysis)

(x i
2 /i \ 2 2

+ x 2 ) +_--] ( _I - _ 2 ) + (xI + X2) sgn (x I + x2) +

2 2

+ ___! (i- xi) < 1.91.
2

Example 29, _8_ Lewis Servomechanism

This system is a positioning servomechanism with a nonlinear feedback

and is described by

or in state space

o

x I = x2:_

;2 "oE2a- blxll 3 x2 - Xl•

The nearby system is given by

Xl = x2

x2 =-

x I

÷ [_,x_-_/o l_l_u3÷ _4<x_,_>,

[2a - b IXl] 3 x2- xl + f5(xl, x2)"
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Thus, the cross product is

2
bxl

X* = 12axl -
L_

sgn (Xl)_ E 2a - b IXlj x 2 +

bx_

+ Xl_2a_1 - -%--sgn(x,)] ,

which indicates that we can let

f4 = 0,
2

f5 _axl bxl=- Ix,J
giving

* 2 b__
X". = x1 L2a - 2 sgn (Xl)] .

Therefore. the choice for _he T.'iapl_nnv f,me_¢_ _ +I.o _¢.¢..I .... +_-- _

h(Xl,X2) = x2 + 2 + (2ax I - b/2 sgn (Xl) x I ,

where

Z6[- _-_I sgn (Xl) > 0.

From h(Xl, x2) and the accompanying condition on x I, we define a domain of

asymptotic stability by the inequality

2

2

x_+ [._ + _x_-_/__o_x_>x_]<r_._L%-gr-j

Example 30, _8] A Nonlinear Damped Pendulum

The equation of this pendulum is

"; + (_sln x)_+

where

Xl = x2 ,

x 2 = - sin xI

sin x = 0,

x 2 sin Xl.
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X* =6sin 2 xI +_2x 2 sin xI cos x I + x2f 5 (Xl x2) + _in x I

A reasonable choice for the unknown functions is

2

f4 = 0, f5 = - _ sin x I cos Xl,

giving

2
X_. = _ sin Xl.

The corresponding first integral gives the following candidate for a

Liapunov function for the pendulum:

2 __2
X2 t _ x 2 sin xI - cos x I -

h(Xl'X2) = _-- 4

2

+ i + e/4._ (x2+ _ sinXl)2

cos 2x I +

+ (I - cos Xl),

where _ > O. The domain of asymptotic stability is given by

,,IXll< _- _ E >0 ,

2

x_.2_2+ E x2 sin xI
2

-cos xI -_4 cos 2x I < I --62/4.

+_x 2 cos xl_f4(xl,x2).

Example 31, _ Globally Stable Oscillator

The describing equations are

_2

The nearby system becomes

= x2_

2 4 3

=_(i - x I 4- x I ) x2 -- x I •

_i = x2 - _ (Xl

2

_2 = 6 (i - xI

3 5

-Xl/3+ ×1/5)+ f4(Xlx2),

4 3

+ xI ) x2 - x17 + f5(xl, x 2 ).
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From these systems the cross product term is

X* = £2XlX2(l - 2Xl/3 +xt/5)(1 - x 2 + x4> +

+ E4 +,t):]
By inspection of X*, the XlX 2 - term is eliminated if

f4 (Xl,X2) = 0

2 2 4 2 4

f5(xl,x2) = - _ Xl(l - xl13 + Xll5 )(i - x I + Xl )"

Thus,

_ 4 Fl 2 2 -}

which implies that 6 < 0 for a positive semidefinlte X. The Li_punov

function is taken as

h(Xl,X2) = ExI

2

3 5 _ 4

(Xl " xl/3 + xll5 )_I + --X'I _ O.
2

Therefore, our system is globally asymptotically stable if E<0.

Example 32, :__ Liquid Motion in a Surge-Tank

The differential equation describing the motion of the water level of

a simple surge-tank is highly nonlinear. The results of the authors', B_

analysis show the existence of three positions of equilibrium, and possibly

the presence of a limit cycle° In the followingjwe give the nondimensional

quantities involved in the analysis:
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_= nondimensional time,

X = nondimensional water surface level in the tank,

_= nondimensional head-loss in the system,

o< = nondimension_Ivelocity.

The equation of motion is given as

2

(l+x)

In state variable notation we have

Xl - x2

- -- x2

(

X2 = -

2j2o<x +

+

E 2_ 6 x2 2_ 1 + 2_x
(l+xl)2 @

This system describes the motion of the nondimensional water level in the

surge-tank, x, and its corresponding velocity, _ ,, d x .
d_

From the above equations it follows that the system has three equilibrium

solutions, or singular points. In the XlX 2 - space the coordinates of the

singular points are

P--I=(0' 0), P2 = ( -i + i + (I + 4/_)

--P3 (- I + _/2 _ 1-(I + 4/_)½J , O) •

, o)
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The llnearlzed system about point P1 is

Xl = x2

x2 = " Xl _
which indicates the following:

2

(1) 2o< > I
@

' PI is a stable node or focus,

2

(2) 2 c< = i

@
, PI is a stable center,

2

(3) 2..__ < I , PI is unstable.

Transforming P2 and P3, respectively, to the origins of new coordinates

(4) for 0 _< I/2 ' P2 is a saddle point,

(5) for 0 < _ < 1/2 , P3 is either an unstable

node or focus.

The equilibrium position PI , the origin, is the point of interest since it

represents the steady state operation of the surge-tanko The saddle point,

P2,; represents an unstable equilibrium above which the water level rises

and below which the level falls. Lastly, P3 is only of mathematical interest.

Thus, the study of stability is concerned with point PI-

The authors used the integral technique in obtaining the following

Liapunov functions; this technique is written up in the text of this section

occurs in _7, 5_. One Liapunov function which was derived isand

xI

0
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where

• C_ 2 22 2 2 2._._ 2 _:_ x 1g I " -- __ x 2 i + xI exp

(1+xl)_ T - _ -$-

Thus V I is positive definite and VI is negative semidefinite for

-i< <Xl.

2
2:<.

Therefore, a domain of stability is determined by the closed bounding

curve given below:-_ +01_

Vl : / [Xl - _+
0

exp 2 x I dx 1

(I + Xl)2 _ "

2

We observe that if _< 2 ¢_ , then a domain of asymptotic

stability exists. As _-_ 2 _ , the implication is that a limit

2
cycle is formedjandjwhich eventually shrinks to the origin as _ : 2 o i .

A second Liapunov functlonjwhich will give a larger domain of

asymptotic stability)is

x I

-- (I + Xl)Z_l
o

where

2

2 o<.x I ] dxl@

2{ 22VZ =-x2 - i _ x_

3

t(l+xl) 2 ] •

+ 2 2)(I - _x.2)I 2°< I + 2o< xI0< (1+Xl)z @ @
+
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Exampl e 33, _ BaKbasin's Equation

Barbasin's equation _ is given as

oeo oe /
x + aI x + (x) + f (x) = O,

where the zeros of _ and f are only at x = 0 and x = O, respectively,

and a S is a constant. The conditions derived by Barbasin for global

asymptotic stability are herein derived by Walker's and Clark's method.

In state variable notation Barbasin's equation becomes

_I = x2 ,

_2 = x3,,

_3 = -ax3 - _ (x2) - f(xl)"

We now consider a "nearby" system which possesses a first integral given

by the function H(xl, x2, x3). Assuming df(x I)

dx I

is continuous, the

differential equations defining H are

"_}{ - alx3 + _(x 2) + f(x I)

 x-7 x-7

__K.H = x3+
-_x3

= x 2 df(Xl )

dxl

"_x3 9x 2
= x 3 + alx 2.

Next, we consider as a candidate for the Liapunov function an integral of

yet another '_earby" system. This new system is such that the first integral

V satisfies the following:

"_xI -_xI
+ fl = x 2 df(xl) + fl

dx I

_v__ - D__ +
_x 2 _x 2

_x3 = "_--.__ +-_x3

f2 = alx3 + /(x2) + f(xl) + f2

f3 = x3 + alx2 + f3 ,
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where fi are determined such that V is negative semidefinite and

_x_ _xi

The time derivative, V, of V, referred to the original system of Barbasin,

is given as

-- _T-x = - a_ x2x3 " alx2f(xl ) + x2 fl +

Cancellation of the indefinite terms in V is:fulfilled if

fl = alf(Xl)

2

f2 = al x2

f3 = O.

The resulting V becomes

['V=-x 2 a 1

x 2
df(xl)_dx I

which must be negative semidefinite.

f _V dXl +f_Vv =

By line integration we obtain V:

dx2 + i _V dx 3

J

l

-- al Jo f(xl) dxl

2 2 2
+ x2f(x I) + a I x2 + x3 + alx2x 3 +

2 2

+
x2 _ (x2) dx 2

0

al l f(xl) dxl

O

x2

+ x2 f(xl) + (x2) dx2 + 2 (alx2

O

2

+ X3) o
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For global asymptotic stability, V is a proper Liapunov function if

al'(X2---.--i_-- df(xl) > O(i)

x2 dx I

,x2# O,

(2) aI > O,

(3) _if(_I) > o, _i # o,

(4) V _ c_O for / x_//___ _ ,

i' /(5) 1/2 (aI x2 + x3)2 +j f (x2) dx 2 + aI f(xl ) dx I > x2f(xl).

o o

Example 34, [-6_ K Third Order Example

The defining equation for this example is

@ee

x + b_¢" + (x + cx) TM = 0

or in state variable notation,

Xl = x2 ,

x2 = x3 '

x3 = _ bx 3 _ (xI + cx2) m.

The H-function is defined by

*_x 2 =- bx 3 + (x I + cx2 )m

where

_x I c

_----_ = x3 + _3"_ If "_x""_"_Hdx21 = x3 + bx 2 .
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For the second "nearby" system the integral V is given by

-_V_ = _H + fl = _i (x I + cx2 )m

-axI _ xI c
+ fl ,

_V__ = _H__ + f2 = bx3 + (Xl + cx2 )m + f2,

_x 2 _x 2

-_V__V_= ___HH + f3 = x3 + bx2 + f3.

-_x 3 _x 3

Considering V as a candidate for a Liapunov function implies that V is given

as follows:

m 2

= (_-_)T x = (I/c - b) x2 (x I + cx2) - b x2x 3 + x2 fl

m7f-

First, we see that the first term on the right should be eliminated; thus,

choose

f2 = _b + l/c] x3 + g2 ,

f3 = E b + l/c] x2 + g3 ,

_ =_3 _f2 = _f3o

where _x 3 _ must be sati,fied if _x-_ _x---2

Therefore, _ becomes

• 1/c]V = - Eb - x 2 _ b/c x2x 3 + x3g 2 + x2f I +
3

m

-g3 Ebx3+ (Xl+ cx2)].

will be negative semidefinite if we retain only the first term on the

right; thus, let

fl = 0, g3 = 0, g2 = I_I"
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The final form for V is

V = - x 2 (b - l/c)

3,

which is negative semidefinite if b > i/c.

By llne integration of the gradient of V,

('_')T-- E Xl + cx_ m ' b/c x 2 +(1)x 3 + Ix 1 + cx23 , 1/c x2+ x ,

1 EXl + CX2J + 1 _X 3 + 2____ +__1 bc - 1 XZ .c (re+l) 2 2c2'

we have

V

The sufficient conditions for this third order nonlinear system to be

globally asymptotically stable are

Example 35,

(1)

(2)

(3)

bc > I,

c >0,

m is a positive odd integer.

_ Nonlinear Feedback System

This particular nonlinear feedback system is defined by

x I = x 2

x2 =

• 12x 3 = - 3x

The H - function is defined by

_H = 3Xl2 x3 + 2x 2

 -772

2 3
x 3 - 2x 2 - 6XlX 2 - x I

+ 6x I
2 3

x2 + x I ,

\
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where

% H = _H dx = 6XlX2X 3 + 2x 2 + 3x I x2 ,

 x-7

____H --x 3 + _ _'H dx 2 = x 3 + 3x I x 3 .

_x 3 _ x3 _x2

The corresponding V - function is given by

_V 3Xl 2 x 2 + 2x23= + 6XlX2X3 + fl
_Xl

2 32

V = 3x I x 3 + 2x 2 + 6XlX 2 + x% + f2,

_x2

2

V = x 3 + 3x I x3 + f3

Dx 3

Considering the original system the time derivative of V is

= ('_)T x = 6XlX 2 - 9x x x3 +

[32 3+ x2 fl + x3f2 - f3 Xl x3 + 2x2 + 6XlX2 + Xl ,

Choose the fi in the following way:

3 3 2

fl = - 2x2 + 18x I x2

5

+ 3x i ,

2 4
f2 - - 6x I x2 + 9 x I x2 ,

f3 = 0 ,

which gives a negative semidefinite V,

2 2
= . 3x I x 2 •
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The llne integral of V V gives

v = Y x3 + 3x2 + 2 + _ x + _ xl6

Looking at V and V, we see that all of the conditions of LaSalle's theorem

are satisfied in the entire space, thus concluding that the system is

globally asymptotically stable.

Example 36, _ A NonsTmmetrical System

Consider the third order system defined by

eeo oo 2

x + bx + { + x + ax = 0,

or in state space notation,

Xl = x2

x2 = x3

x3 = " bx3 - x2 - Xl - axl 2 ,

For the corresponding nearby system the H - function is given as

2
H = bx 3 + x2 + xI + ax I

"_x 2

where

___H = x2 + 2ax I x2,

"_x I

___H = x 3 + bx 2
"_x3

Thus, the gradient of the V - function becomes

--V = x2 + 2axlx2 + fl,

_Xl

_V = bx 3 + x2 + xI +

x2

2
ax I + f2,

____V = x3 + bx2 + f3 .

"%x 3
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For the original system, the time derivative of V is

V =- _-l-2axl_ x2 - b2x2x3 - bX2_l + ax2]+

+ x2f I + x3f 2 - f3_x3 + xI + x2 + ax_j.

Choose the fi such that the second and third terms, on the right, in

cancel; that is,

2

fl = b(Xl + axl) ,

2
f =b x2 ,

f3--O ,

and

_. x:[_._.x_
is negative semidefinite if 2ax I < b - i • Integration

of the gradient of V, WV, gives

ExV = 2 x3 + b + 1/2 2 + Xl + axl

'+2 xI -i- x

Locally, the origin is asymptotically stable if

+

(I) 2ax I < b - i ,

(2) 0 < b - i .

The region of asymptotic stability about x = 0 as given by the above Liapunov

function is

o _ v (b-l) (b+3) 6a___l .min 96a 2 )
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Linear Switchin_ System

The defining equation of this system contains a function which is

plecewise linear, namely:

"" x + b3sgn (x + cx) = 0_' + b I x + b2

where the bi's and c are constants and

O,

sgn(y) =

In state variable notation we have

xI _ x2

>°Iy 0 .

y < o

_2 = x3

x3 = - blX 3 - b2x 2 - b 3 sgn (x! + cX2)o

The H and V functions are defined as in the previous examples, the gradient

of V being given as

_V = b3 sgn (xI + cx2)

_x I c

+ fl

-____V = blX3 + b2x2 + b3 sgn(xl + cx2) + f2
_x 2

"____VV= x3 + blX 2 + f3.

-_x3

Thus, the time derivative of V is

2 2
= - b3 (b I - l/c) x 2 sgn(x I + cx2) - bI x2x 3 - blb 2 x 2 +

+ x2 fl + x3f 2 - f3 [blX3 +b2x2 +b3 sgn(x I + cx2 )_ •

We choose the fi such that the first two terms in V disappear; thus, we have

fl = 0

x3 + blX 2 ,

C

x2,
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and integration of _) gives

V = c xI + ex 2 sgn (xI + CX2)

2

*_ 2+

b2 2 cbl - 1
X 2

+ 2 2 + 2cb I x3 .

The system is globally asymptotically stable for

(i) bl, b2, b3 > 0,

(2) c > o,

(3) b 1 c > 1.

Example 38_ _ Fourth Order System

Consider the system defined by

Ooeo @ee 3

x + 4x + 5_ + 2_ + cx

or in state variable notation

Xl = X2 ,

x2 = X3 '

_3 = x4 ,

x4 = " 4x4 " 5x3

= 0,

- 2x 2 - CXl3 .

The H - function is defined by

_H = 4x 4 + 5x3 + 2x 2 + cx_

_x 3

____x: D__ ___HHdx : 3 =Xl
_xl _Xl _x3

x3 ,
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x2 _ x2 "_x3 dx3 I _ 2x3'

_H

_x 4

x4 +

The gradient of the V - function is given by

__.__V = _H + fl = 3cx2 x3 _:+ fl,

_xI _x-y

4x 3 •

-__..vv--_---_"+ f2
"_x2 _x2

= 2x3 + f2

-_V__ = _H__ + f3

_x3 _x3

3
= 4x4 + 5x3 + 2x2 + CXl + f3

___V = ___H + f4

_x4 _x4
= x4 + 4x 3 + f4

The time derivative of V is

=-lex3x4-sx2x3 -4cx3x# +3cx#x2x3 +

- 18x 2 + x2f I + x3f 2 + x4f 3 +

-f4 E4x4 + 5x3 + 2x2 + cx _.

By choosing the fl as given below, the first three terms in V are cancelled:

2 3 *

fl = 12CXl x2 + bcx I + fl ,

f2 = 8x2 + 4cx_ + bx4 + 5bx2 + 4bx3 + f2 ,

f3 i 16x3 - bx3 + 4bx2 + f3 '

f4 = bx2 + f4 '



- 98 -
9:

where b is a parameter to be determined and fi are new undetermined functions

where mmst satisfy _ fi___*--_fi* • Thus, V becomes

_xj _x i

V : 3cx x2x 3 - (18 - 4b) x + 12 CXl2 x22 +

. 9: 9:

- 2bx_ + x2f I + x3f 2 + x4f 3 +

- f4 L4X4 + 5x 3 + 2x 2 + cx
I

This new expression for V is further simplified if

, 9: 9: 9:
fl = f3 = f4 -0 , f2 =- b/2 x2.

A convenient choice for b is b = (192/43); then we have

-- cx I . x2 + 1/8 x +

2 2
3 cx 1 x 3 ,
16

2 Z 3__2

which is negative semidefinite for x I -- 43c The corresponding V is

[be/ 4
v--cx_x3 + 4cx31x2 +_ 4ixI + 2 (1+ 2b)x2x3 +

i 2

+ 4 (16 + 9b) x2 + b x2x 4 + 4x 3 x4 +

I

+ _ (21- b)x32 + 1/2 x42.

A conservative estimate of the domain of asymptotic stability about _ =

for this Liapunov function is given by VB

where C > 0 and b = 19__/_2.
43

: 3/10 c _ V >___ 0
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LIAPUNOVIS DIRECT METHOD AND ROUTHIS CANONICAL FORM

SUMMARY

In this section the equivalence between Liapunov's Direct Method and the Routh-

Hurwitz Criterion for linear systems is established. For a linear system _ = A _,

a transformation matrix _ is developed which transforms the system matrix A into a

special matrix R called a Routh Canonical Form. That is, by letting M = Q x and

-i -i

substituting into the system equation, we get _ = [Q _A Q ] y , where R = Q A

The elements of R are closely related to the elements of the first column of Routh's

arrays. For linear systems the conditions for stability obtained from the R matrix

by Liapunov's Direct Method are the same as the Routh-Hurwitz Criterion.

This treatment is then extended to nonlinear systems. As a result of the

application of the transformation, _ = _ _, to nonlinear systems, the linear terms

are essentially removed from further consideration and only the nonlinear terms

remain. This method is discussed in detail and a compendium of nonlinear differential

equations analyzed by this method is presented,

INTRODUCTION

In reference [i]*, the Liapunov's Direct Method is shown to yield necessary and

sufficient conditions for the stability of solutions of linear, time-invariant

differential equations. These conditions must be equivalent to the Routh-Hurwitz

conditions, for these are also necessary and sufficient. Several papers have recently

dealt with this equivalence. In England, Parks_2,3J gave a direct link between the

two methods by proving the Routh-Hurwitz Criterion using Liapunov's Direct Method.

In this country, Reiss and Geiss [4] have given a more straight-forward proof than

that of Parks. The equivalence between the two methods of analyzing linear systems

presented in this section will follow the work of Purl and Weygandt [5]. The reason

* refer to the references at the end of this section.
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for following their work is that it can be extended to the stability analysis of

nonlinear systems•

The material presented in this section is based on the discussion and examples

found in references [5,6,7,8] • The Routh's Canonical Form is applicable to the

study of linear systems and a certain class of nonlinear systems. The basic technique

is considered first, the discussion being based on references [5,8] • Then the exten-

sions and modifications, as given in references _,7_ , are outlined• The final

part of this section is a compendium of examples which comes from references

[5,6,7].

In passing, we make note of other applications of the Routh's Canonical Form.

In reference [_3 , Purl and Weygardt calculate quadratic moments of high order linear

systems via Routh canonical transformations and Liapunov functions. In reference

[lOJ, Purl and Drake analyze the stability of nonlinear, nonautonomous difference

equations by using Routh's Canonical Form to generate Liapunov functions.

BASIC SYSTEM IN JORDAN CANONICAL FORM

The system being analysed is described by a differential equation of the form

(n) (n-l) (1) (i)

x +a ax + . . . + a x + a x + F = O,n-i n

(n) (n) n n (n-l) (n-2)

where x = x (t)=d x/dt and F=F (x , x , ... , x;t)

is a known nonlinear function of x and its derivatives• The values aI, ... , an

are real constants. When F is identically zero, we have a linear autonomous system•

System (i) may always be written in the state variable or the Jordan Canonical

Fo rm:

x = A_ x - b _F, (2)

where

X _

X_ Xl =X

X2 X2 = X (11

-_'-I X_'o = X" (n-l)

(3)
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b

m

0

0

0

i

(4)

and

m d x_/dt , (5)

A

w

•

0

0

-a

n

0 • • ,

0 i . . .

• •

0 0 I" • •

I-a -a

n-ln-2

and where F is a scalar function.

0 0

0 0

0 i

-a2 a]

(6)

Linear Autonomous System

Consider the linear, autonomous system corresponding to equation (2), namely;

"_x,, A .x. (7)

To analyze the stability of this system, we introduce the transformation

I = R x, (8)

where Q is a real, nonsingular, constant matrix• Substituting equation (8)

into equation (7) gives

-1 (9)
i=_A_9, y ,, ._ _,..
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where R is chosen as a real matrix expressed in the following form:

R

-rI

0

0 • . • 0

• • • 0

• • • 0 0

0

0

The elements of R are real quantities related to the Hurwitz determinants of

equation (7), as was shown in reference [33 .

(10)

Because of the importance of this

report being used for instructional purposes, the above relationships are

repeated in the following paragraphs•

Elements of R vs. Elements of A_

The matrix A in equation (6) for orders, 1,2,3, ... can be denoted by

A_I = -aI

A2 --

_ -- 0

0

-a 3

1

0

-a 2

0

1

-a 1

The characteristic polynomial for the ith order matrix is denoted by

A,i(A ) =

In expanded form, we have

A --

A A,2(_ ) --

_ I - Ail , = 1,2,3, ...

at+ 1,

a2 + _a! + _2,
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n-1 n

A ()0 = a + a >_ + . . . + a>_ + /_
A,n n n-i l

The recursion relationships for the characteristic equations are

A (I) : z ,
A, 0

A (I) : ai + _A (_) , i : 1, ...,n.
A,[ A,i-i

Similarly, matrix R in equation (i0) can be written, for orders 1,2,3,...,

as:

R I = rI ,

(ii)

R2

J

-rl _ r2

-_2 0

_R3

0

The characteristic polynomials corresponding to R are

I
The recursion relationships for these characteristic equations are

A. (I) = rl + _,
R, I

A (_) = r2 + rl _ + z_ 2

R, 2

A (>_ : AA (_) + r
R, I R,i-i i

, i = 3,4,...n.

(12)



-6 -

Since A_Iand R1 are similar matrices, we have

A =A ,
R,i A,i

i = i, ._ n.

In equation (13), we equate coefficients of equal powers of _ to obtain the

relationships between the elements of R i and A i.

As an example, consider i = 6.

aI = r1

a2 = r2 +

a3 = rI (

The results from equation (13) are

r3 + r4 + r5 + r6

r3 + r4 + r5 + r6 )

a4 =

a5 = rlr 3 (r5 +r 6) + rlr4r 6

a6 = r2r4r 6

Solving these equations for ri in terms of ai gives:

r4r 6 + r3r 5 + r3r 6 + r2 (r4 + r5 + r6 )

a3 /a I

- b/b
2 1

b4 /b 3

a6b3 /

r I =A i= aI

r2 = _2/AI = bI = a2 =

r3 = A3/_2 = b3/a I _ a/a
3 1

r4 = _IA4/_2_3 = b 2/bl -

r5 = A2A5//_ 3 A4= b3 /b -

r6 = _3_6/A 4z_5 = a6/r2r 4 ,

whereA i are the Hurwitz subdeterminants and

(b2b 3 - blb 4 )

(13)

°
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bI = a2 - a3 /a I

b2 = a4 - a 5 /al

b3 = a3 - a I b 2 /b I

b4 = a5 - a I a6 /b I

th
In summary, we have the following results for the n---order system:

rl = _ I = al

r2 = _2/_I a2 - a3 /al

........ ......................

ri =Ai-3_J_i-2 _i-1, i = 4, 5, ... , n.

Liapunov Function for the Linear System

As a candidate for a Liapunov function, choose:

n 2

i=l

(15)

where, by equation (8),

e =_TQ. (16)

The time derivative of V is given as

ye (17)

Combining equations (i0) and (17) gives:

V= -2 rl y 2
i

which is negative semi-definite provided that r 1 > O. This is the first

Routh-Hurwitz stability condition. The other Routh-Hurwitz conditions are

determined from the requirement that _ is a real matrix.

(18)
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th
The following is an algorithm for finding the elements of Q for an n order

system. This algorithm is derived from the equation

Q A--R R (19)

th

Let the rows of _ be designated 0,1,2,...,n=l. The elements in the i row

multiplied by
of _ are the coefficients of _ in the expressions forR, I

1/2
n

(7[ r ) except when i = n-l, then the multiplier is unity.

j=2+1 j

As an example, consider n=4; the results are:

%

(r2r3r 4 )

%
R--

0

%
rl(r3r 4) (r3r 4)

% %
r2 (r4 ) rI (r4)

rI r3 r2+ r3

0 0

0

%
(r4 )

rl

0

0

I

%

(r2r3r 4 )
0

%
_r3r 4 )

0

0

I°

0 0

%
0 r4

0 0

0

0

0

i

i 0 0

rI

r2

rlr 3

I

rI

r2+ r3

Since the _ for any order system can be written in this form and since _ is a

0

1

rl

real matrix, then we require that

ri>0, i = 1,2,...,n.

The inequalities in (20) are exactly the Routh-Hurwitz conditions (see

(20)

equation (14)). Therefore the relation between Liapunov's Direct Method and

the Routh-Hurwitz criterion for linear, autonomous systems has been

demonstrated through the use of Routh's Canonical Form.

Nonlinear, Autonomous Systems

For this case we consider equation (2):

0

0

i

x = A x - b F, (2)
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where F isan autonomousfunction. The reasoning behind the following procedure

can be best expressed by a quote from reference [5J , "since with F identically

zero the transformation _ = 9`_ resulted in both necessary and sufficient condi-

tions for asympototic stability, it is reasonable to expect that the sametrans-

formation might be useful in the nonlinear case". Thus, our candidate for a

Liapunov function is

Vl=XTZ=  

where P = 9`T 9` and _ is the matrix obtained for the corresponding linear system.

Taking the time derivative of V I gives

Premaltiplying equation (2) by 9` gives

(21)

(22)

Qx = OAx - Q b F.

Substituting equation (8) into (23) gives

(23)

but we see that

thus

Now substituting (26) into (22) gives

=Ry_ -QbF, (24)

= _ Z - _ F. (26)

2
= "2rl Yl " 2YnF'

9. b = b, (2S)
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The variables Yl and Yn can be expressed in terms of Xl,_..,x n by using

equation (8) and the _matrix. Depending upon the nature of the nonlinearity F,

V I may or may not be a Liapunov function. If V I is not a Liapunov function, we

inspect equation (27) and find a scalar function V 2 which is at least positive

semidefinite and such that (Vl + V2 ) is negative semidefinite.

function is

Thus, our Liapunov

t

V = V I +/ V2dt.

o

The requirement which V 2 fulfills is that it cancels that part of the right hand

side of (27) which is not negative semidefinite.

In passing, we should note that for the nonlinear case _ need not always be

nonsingular. This will occur if the system matrix A has some pure imaginary

characteristic values. The nonlinearities in the system then may produce a stable

system, while the corresponding linear system is unstable.

(28)
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WORK OFHALEYANDHARRIS

INTRODUCTION

The central theme of this work is the investigation of the time derivative

of the V-function for the nonlinear system given in equation (2). By combining

equations (8), (25) and (27), V becomes

(29)

$ = x[_A+A__PS_-_T_ 2_ b F,

where _ = _T _" Harris discusses the various forms of the linear part of V in

reference [6_ , namely _T [P A + _ P] _. Haley's thesis, reference [7] , deals

with the constraints on _ in the equation _ A = R _ such that the nonlinear part

of V, 2_XT P _ F, is negative and semidefinite. Haley also considers complex trans-

formations defined by the matrix _. Harris briefly discusses a Hurwitz Canonical

Form _pp]_a _ 1_=°_ =,.=+=_o. _,,+ _ _ _^_ _ ....... _ ...............

additional stability information beyond that given by the Routh's Canonical Form.

HARRIS'S WORK

In reference [6] , Harris considers the various R and _ matrices which can be

th n-I
developed for linear systems. For an n-_ order system there exists 2 independent

matrices and n2 different R matrices. These various forms for R and _ do not all

contribute new and significant information about the system being considered• For

the third order case, Harris lists the R and _ matrices of Purl and Parks. In

addition, Harris finds two other third order _ matrices by integrating or

differentiating certain elements of the corresponding differential equation and

then multiplying the entire equation by this generated term. The resulting _'s

produced by this method will be given in this section; but the application of the

same technique to the direct generation of Liapunov functions will be discussed
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in the Integration by Parts section of this report.

For a given _ matrix, Harris generated new R matrices by interchanging the rows

in the _ matrix and then solving the equation Q A = RQ for R. The reason for

generating the various R matrices is to obtain different forms for the linear

part of V, namely:

YT _-RT + _R) y : 2 r I yi2 , (30)

where i = 1,2,..., or n, As an example, listed below are the third order _'s

and R's obtained by Purl and Harris:

PURl & WEYGANDT

r2

0 0

_/_ o , __=
r I i

-rl

0

0

0

0

, (31)

=-r r rx 2
(V)LINEAR 1 2 3 i

HARRIS

R

0

rI I

V_ 0

R

-rI _C_ 0

-V_ o -rV_-
0 -rV_3 0

(32)

HARRIS

2

({f)LINEAR = - rlr2x 2 •

R

o o r_F
a3 a2 0

0 rl-_-3 ir_-3

(9)LINEAR = - rlr2x23 ,

R

-rl

V_7 o
o

0

V_7
0

(33)
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Harris noted that if one requires the linear part of V to be negative definite

and not just negative semidefinite, then the following procedure can be followed.
th

Let rl, r2,... , rn be the n elements in the n-'- order R matrix. Let _i = QiTQi

be the matrix which satisfies

2Vi = XTP [ x,

and

2

V i = . rlr 2 ...rn_iX i

where i = 1,2,...,n, and where V i is a Liapunov function.

function by letting

Now form a new Liapunov

2V = 2 (VI÷V 2 +...+Vn) ,

where V = - (rlr 2 ..... rn_l) _XT_.

This V is a negative definite function for a linear system if[rlr 2 ..... rn]>O .

The third order V whose derivative is negative definite can be formed from the

and R matrices listed in the equations (31), (32), and (33).

HALEY'S WORK, 7

(a) Third Order - Real Transformation

We first consider the third order system where _ is a real matrix. The

and R matrices are given as indicated below:

0

0

-a 3

i 0

0 i

-a 2 -a I

and R = , (34)

From the equation QA = RQ we get 9 equations involving the 9 unknown elements,

Qij, of _. Only 6 of these equations are independent and thus we have three degrees
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of freedom. For example, if QI3= Q23 = 0 and Q31 = r2 , we get the 3rd order _ -

matrix of Purl andWeygandt. If Q23 = O, QI3 = i, and Q31 =_ , we get the

_-matrix of Parks.

Nowconsider the nonlinear part of V, equation (29), 2_xT P _ F. The only

important terms in Pb are the elements PI3 , P23 and P33" In other words, the

nonlinear part of V can be written as

2_T Pb F = 2F I Xl PI3 + x2P23 + x3 P33] •

Haley considered the following six cases:

Case i: PI3 = 0, F is a function of Xl, x2 and/or x3 ,

Case 2: P = P = 0, F is a function of x and/or x
13 23 2 3 ,

Case 3: P = P = 0, F is a function of x and/or x
23 33 i 2 ,

Case 4: P = P = 0, F is a function of x , x and/or x
13 33 i 2 3 ,

Case 5: P33= O, F is a function of xI and/or x2 ,

Case 6: P23= o, F is a function of only x2.

The 6 independent equations from QA = RQ plus the above restrictions allow us

to find the _ matrices. Haley found for the above cases the following results:

Cases 2,3,4 & 5 give only trivial solutions; case 6 is a special case of case I.

The results of case i are given in the following discussion.

The form of the nonlinear differential equation that can be analyzed is

(35)

•1. • • • • •

x + a (x, x, x ) "x + b (x, x, x ) x + a3x =

where the nonlinearities are greater than zero and

O_

a(x,x, x5 =a l+ a (x,x,x'),

(36)

b(x, x, x_ = a2 + b I (x, x, x_.
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For asymptotic stability, the constants al, a2, and a3 must be positive, and

a_O and b_0 for all x,_,_, considered. The special cases where al= O, a2 = 0,

and/or a3 = 0, will be considered in the examples at the end of this section•

The general form of F in equation (36) is

i. •

F = a (x, x, x) x + b (x, x, x) x

The transformation matrix Q can be written as:

R

0

rlr 3 r2 + r3 0

0

In state variable notation, the final Liapunov function and its time

derivative are

2 r-

V = r2x 3 + Lrlr3Xl + (r2 +

x +

r3) x_ 2 +

x2 (t)
/I

+ 2 / (r2 + r3 )

u

x2(O)

i

b ( Xl, x2, x3) x2dx 2 +

(37)

and

(38)

x2 (t)

+ 2 rlr 3 a (xI, x 2, x3 ) x2dx2, (39)

x2(O ) ........

a I 2 2
"q " - [2rlr 2 - 2 (r 2 + r 3 ) (x 1, x2, x 3)_ X 3 -- 2rlr3x 2 b (Xl'X2'X3)'(40)
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The relationships between the ri's and the ai's are given by equation (14).

(B) Third Order Systems, Complex

The matrix _ in equation (8) is taken as complex, and thus the vector X

is also complex. The candidate for a Liapunov function is given by

* * i

v = x _x =_XT QT Qx = _XT_e x,

where (*) indicates the complex conjugate. Haley studied the V - function in

(41) and its corresponding time derivative, but the conclusion of his studies

was that no significant new transformation, _, can be found. This conclusion

was found to be true for 2nd order and 4th order systems, as well a6 for 3rd

order systems.

(c) Second Order System

For the second order system, the A and R matrices are given as

0 i -r I

A = land _ = •

-a2 -a I _ 0

Following the same analysis as for the third order case, the corresponding

matrix becomes

Q

0

0

The most general nonlinear differential equation considered is

+ a I _ + a2x + F = 0,

i

where a I and a 2 are positive constants and F = a (x,x) x

i
+ b (x,x) x. The

(41)

(42)

(43)

(44)
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nonlinearities aI and bI are also positive. In state variable notation, the

final form of the Liapunov function and its derivative is
x (t)
i

2 2 I i
V = r2x i + x2 + 2 J b (Xl, x2) XldX i,

x (o)
I

and

(45)

2 2 1

= -2rlx 2 - 2x 2 a (Xl, x2).

(d) Fourth Order System

For the fourth order system the A and R matrices are

A

m

0

0

0

i

0

0

0

I

0

-a2-a 4 -a3

o_
and R-

-r 1 •

o

o

0 0

As in the second and third order cases, the _ is found to be

0

0

r+r

3 4

r2

0

r4 0 i: 0

0 -r_ 0 0

r_ 0 0 0

The form of the differential equation considered here is

0

0

0

(46)

(47)

(48)

"x" + alx'+ a2_ + a3x + a4x + V = 0, (49)
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• .o•

where al, a2, a3 and a4 are positive constants and F = b (x, x, x', x ) _.

The nonlinearity bI is also positive. In state variable notation, the final

form of the Liapunov function and its derivative is

.,_nd

f 2a3 x_+ i x + (r4x I + x )
v:ic F 3

x2 (t)

2 2 a

+ r3x 2 + r3r4xl+ 2 3 x2dx 2
rlr 2

x2 (0)

+2

x3(t)

f
x3(0)

Illb___x3dx 3 ,

L r2J

+

+ (50)

Ia 12= -2r I 3 x2 + i x4 • (51)

HARRIS'S "HURWITZ CANONICAL FORM"

reference [6] , Harris derived a Hurwitz Canonical Form to be used inIn

stability analysis. For second order cases the Routh and Hurwitz Canonical Forms

give equivalent Liapunov functions• This is not true for third and higher order

systems. According to Harris, the Liapunov functions given by this canonical form

are not as useful as those given by the Routh Canonical Form. Thus, we will only

briefly outline Harris's derivation of the Hurwitz Canonical Form.
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(i) (2) (n)
x + an-i x + an-2 x + . + x + F(x, t) = 0,

a a a a
n n n n

or

(i) (2) (n) i

x +=<x + O<2x + ... +o<x +F _, t) = 0,i n

where o<i,... ,o<are constants and FI _, t) is the nonlinear part such thatn

Fl (o,t) = o.

Define the state variable x by

(n)
XI = X

(n-l)

x2=x

x = x(1)
n

JXndt = x = -_x I - n°<_lx 2 -

In matrix form (52) becomes

I

..0 -°Ix n- F (_,t).

(52)

(53)

where

x_dt=Ax- DF 1

A

0

0

0

n

i

0

0

-¢_n-I

0

-<n-2

0 0

0 0

0 i

_o< _0<
2 1

and b =

0 1

0

0

i

(54)

• (55)
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Following the same procedure as in the derivation of the Routh Canonical Form,

a change of variable y is defined by

X =_x, (56)

where Q is a constant matrix. Substituting (56) into (54) gives

y dt = R_-_. b F Q_, t)

where R = _ A Q Now let the candidate for a Liapunov function be

2V = ([ _Tdt) ( _y at),

and the corresponding time derivation is

25 = ( _ _T dt) y + yT ( _ y dt)
!

= YT _T +R ) y - 2YT_b F I _,t).

(57)

(58)

(59)

Equation (59) indicates that we may use all the previous formulas of the Routh

Canonical Form technique to generate these new Liapunov functions. All that is

necessary is to replace the a's in the _ matrices by o('s and replace the r's in

the R matrices by _ 's. The form of the conditions for stability remain the same

and the conditions for stability in linear systems are the same. The _ 's in the

new R matrices are related to the Hurwitz determinants. The major difficulty of

this method is that the nonlinear term in V, y Q b F S is not as simple as that
- )

given by the Routh Canonical Form.

Conclusions

In this section we have discussed the Routh Canonical Form and its relation-

ship to the stability of a nonlinear system. First, the work of Puri and Weygandt

was discussed and their method for generating Liapunov functions was described.

The work of Haley and Harris resulted in the analysis of rather general second,

third, and fourth order nonlinear, autonomous differential equations. The method

can be extended to any order equation; but, as the order increases, the labor

becomes prohibitive due to the various R and _ matrices which are possible in this

analysis.
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COMPENDIUMOFEXAMPLES

Second Order Examples

Example i, [5] & [6]

The system is described by

.. 3

x + x +_x = O, k constant.

Writing this equation in state variable form gives:

m

x I

x2

0 i

0 -i

x I

x2

0

i

3

K X I

where xI = x, x 2 = i.

Since rI = al= -i and r2 = a2=0 , then

Q __

0

rI i

0 0

i i

(We note that _ is singular in this example..)

The transformation _ = Q x becomes

o o
1 1

The V 1 -function defined by YT 5' is

V I = ZT_ = ( Xl+ x2)2 ,

where

, det. _ = 0.

I°1
x I + x2
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3
Add V = 2_ x to V in order that the sum is a semi-definite fo_. Therefore,

2 21 i

and

4
++ =-2Kx

I 2 i

V (Xl+ x2)2 7t 3 4
= + 2K x ix2 dt (x I + x2 )2

0

Thus, V is positive definite and V is negative semi-definite if K>0. Since

V-_00 as Ilxli__._ oo and since no trajectory of the system makes ff identically zero

except the trivial solution, the system is globally asymptotically stable.

Example 2, [7]

From the field of electronencepholography, we have

2 6 dxl0)+ (a + b x - cx + x + x = 0

where a, b, c and d are positive constants. Using state variables, we have:

Xl = x2 = _

x2 = ax2 -Xl -f

f = (-2a + bx 2 - cx_ + dx_ O) x 2

Haley's _ matrix takes the form

Q ____.

0 1 0 1

0 -i 0

where r I = a and r2 = i. Thus, V and V become

2 2

V = yT y = Xl + x2

V = _XT [_AT QT Q + QT Q A]x - 2XT _T Q b.f

+
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V is positive definite and V is negative semi-definite when

2 i0 6

b xI + dx I > -2a + cx i"

When this inequality is satisfied the nonlinear differential equation is asymptotically

stable.

Example 3, [7]

Consider the equation:

where f(x) is defined by

•. 2
x + ax + b f(x) = O,

f(x) = x-f I (x) ,

fl(x) = O, -K_-- x _ K

fi(×) = ×-_ × > K

fl(x) = x+K, x<--K.

Rewriting the differential equation gives

and in state variables

The _ matrix becomes

0 I

-b 0

where rl= a, r2= b2, and b> 0.

+ a x + b2 b_x = fl (x),

il----x2

x2 -ax2 b2Xl + b2= _ fl(Xl).

Thus,

Vl= yyy = x 2 + b 2 x2

41 = -2a x_ + 2b2 fl (Xl) x2 "



Adding_ 2 -2b2 fl (Xl)
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x2 to Vl gives

_ _i + 92 = --2ax_

Xl(t)

v° + /x2-- 2b2 fl (Xl) dXl"

Xl(0)

It can be shown that if a > 0 and -K<xI<K, then the system is asympotically stable.

The system will also be asymptotically stable whenever Xl(t ) and xl(O) satisfy

Example 4, [5]

2 _Xl(t)x I > 2

JXl(O)

fl(Xl) dx I-

This example was analyzed by Schultz and Gibson using the variable gradient

method.

The equation is

+ _ + f (x) _ +d_(x)x _ +@×f(x)--0.
dx

In state variable notation we have:

x I = x, x 2 = x,

Xl = x2'

A

0 i

-a2 -a I

0 i

0 -i

x2 = -x2 -F (x I , x2),

F (xI, x2) = f(xl) x2 + df(x I)

dx I

0 i

= 0 -i ,
h_____

XlX 2 + _Xrf(x i )

F (XI, X2).
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The _ matrix is

A/_ 0 0 0

Q= =

rI i I i
i

where rlm aI = i and r2 = a2 = 0. (Note, this is another example where Q is

singular.) The V I function is

VI = _T _ = (xI + x2 )2 ,

where

A 2

vl_ = m 2rlY I - 2y 2F

= -2(x I + x 2 ) [

Now let V2be

f(x I) x2 + df(x I) x I x 2 +

dx I

_2 = 2XlX2 [ dxlf

L
(Xl)

+ _ f(xl) I

Thus, V! + V2 becomes

/

r

= Vl + V2 =

and V = (x I + x 2 )2

xl I
x I

i"

+ 2 / [ dXlf(x I) + Q f(x i)

0 [ dXl

Therefore, the system is globally asymptotically stable if:

(i) dXlf(Xl)

dx
i

> O,

(2) @ f(xl)>0,

(3) V _ 0 on any nontrivial trajectory,

(4) V--oo if 'xi--_ _.
il

XldX I .
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"x'+ a_ + bx + abx + F =0

where a and b are positive constants, and F is a nonlinearity which makes the

unstable linear system stable by its presence. The _ matrix is

Q

0

rr{?

r2 r I

0

0

0

a

where rI = a I = a, r2 =a2-a3 _ b-ab= O, and r3 = a3/a I = ab/a = b.

a
a 1

Thus

the Vl-function becomes

V I = _T _ = b (ax I + x2 )2 + (ax2+ x3)
2

where Xl= x, x 2 = x, and x 3 -_ x. The time derivative of V I is

2
VI " -2aYl -2FY3 = -2(ax2 + x3 ) F.

2m+l

Choose F = K x 2 , where m is a nonnegative integer. Thus, VI becomes

2(m+l) 2(m+1)
V I = -2aKx 2 - 2Kx 3 x 2

This dictates the choice of 92' namely

2m+l
_Z = 2Kx3x2

Thus,

2 (m+l)

x2

and

V = b(ax I + x2 )2 + (ax2 + x3 )2 + __K x 2m+2
m+l
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The system is globally asymptotically stable if*,-is nonnegativ_integer, K_0, a_0,

b>0, and F = K x2m_l.

Example 2, 5

The following example comes from the Russian author, E. P. Pop.v:

• .. .o K

x + i x + i F(W)= O,

T T

where

t

0< = K2_x + K3_x - K4

0

F(_) dr,

and T, KI, K2, K3, K 4 are constants. In state variable notation, we have

xI = x2 =

_2 = x3 = "x"

K
_3 =-_ x3- F1 , F1 =_!I F(_).

T T

Since

a, = I/T

The Q matrix becomes

r_4_

r 2

The V 1 - function is given as

= r I , a 2 = a3 = 0 and r2 = r3 = O,

V_

rI

0

0 =

i

0 0 0

0 0 0

0 I/T 1

where

,, ), F(_).
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The time derivative of o<is given by

= K2 X 2 + K3X 3 -- K 4 F(_).

From the original differential equation and the above expression for _we can

finally obtain

= 2KI F(o() _ +2K3 X 2X2 F(=<) _ K2 T 3
+

K3 X3X3 + 2 KIK4 F 2(4).
+ K2---_

Substitute this expression into the equation for _i and then formS2; that is

V2 = 2KI F(_)_+ 2 K3 - i X3X 3.
K2T2

Hence, we have

9 : 91 + 92 =- _ - i + F(_) ,

and

d

K2 T K
O

- i

X 3

The conditions for asymptotic stability are:

(i) KI>O, K2>O, K4>O,

(2) K3 - i I > O,

K2T I
(3) T > 0,

(4) _o F (dO do< >0.
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Harris's example is

- 29 -

"_ + a_

where rI a i '

F (x, t) = a3 X

3

+_+ a3X =0,

r 2 =:a 2 , r 3 = 0 and

3

• The V I - function becomes

where

2 2
2V I = a2 X + (alX + X ) ,

.2

$i = -- ala2 X

Define $2 as

• 3 .
_T

v2 = a,a 3 X

Thus, we have

3
-- (aI X + X ) (a3 X ).

X +
3 .. 2 .2

v X a- qo^ y y

2 2

= VI + V2 : -- a l (a2 - 3a3/al X ) X ,

.2 4 3 .
2V = a2 X + (aI _ + _)2 + ala3 /2 X + a3 X X,

+ +
a2 _-_i ! + a3 X 2 (a|X + _)2.

The conditions for asymptotic stability are

(i) ai>0, a2>0, a3>0 ,

(2) ala 2 > X2 "

a3

Example 4, [7]

The differential equation is

•-- (i)X + a X + b X + CX = 0.

(x) (h) " "Using state variables and writing b x as b x = b x

b being a constant, we get:

+ b' (x) _,
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XI =

x2 --

X3 =

Haley's Q matrix is

0

R " rlr3

0

where rI = a , r2 =

X 2 = X ,

X3 ,

- ax 3 - bx 2 - cx I - b'(x2) x2.

o

r2 + r3 0

b - c/a

o o -Vb-cla

c b 0

o VrTr

and r 3 c/a.

Thus, the V I - function becomes

V I = Y Y = (b - c/a) X2 + (CXI + b_2) 2

2
+-@'_ X 3

where

2

VI = - 2a (b c/a) X 3 - 2b'(X 2) X 2

Let V2 be defined by

cx

$2 = 2bb'(_2) _2_3;

then

+

+ bx3] •

and

2 2

= -VI + -V2 = - 2 (ab-c) x 3 -- 2cb' (x2) x 2,

V = (b - c/a) X3 + (CXl + bx2) + x2 + _c/a 23

x2(t)
f

+ 2 / b b'(x2) x2 dx 2.

(o)

2
+
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This is our Liapunov function. Thus, for asymptotic stability we require

(i) b'(x2) > 0 , b _ 0,

(2) a>O , c>O,

(3) ab -- c > O.

Example 5, [7]

The stability of the null solution of a system, characterized by the

following differential equ_, is investigated:

X + {(x, x) x + b x + cx = 0

where f is written as

(x, = a + a' (x,

The differential equation in state variable form is

XI = X2,

X2 = X3 '

X3 = -- ax 3 - bx 2 - cx I - a ' (xI , x2) x3-

The transformation _, Haley's form, is

0

= c

where r I = a, r2 = b - c/a

The V I - function becomes

0

- -_/b - c/a

0

1/-c-/a

and r3 = c/a.

= 2
V I Y t X = (b - c/a) X 3 + (CXl + bx 2 )2 +

where 91 = - 2(ab-c) X 23-- 2a'(Xl'X2) X3 (cx2 + bx3)"

Thus, let 92 be

92 = 2 ca' (xI , x2 ) x 2 x 3 .

2
c/a (ax 2 + x3) ,
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Therefore, the resulting 9 and V are

2= VI + V2 = - 2 x 3 [ab + ba' (Xl, x2) -- c

= - 2 bf (Xl,X 2) - c x 3,

and

2 + (CXl + bx 2 )2 + c/a (ax 2 + x3)2 +V = (b-c/a) x 3

x2

+ 2c f a'(xl, x2 ) x21x 2.

o

The conditions which must be satisfied for asymptotic stability are:

(i) bf (Xl, x2) -- c > 0 ,

(2) a > O, c> O, ab-c > O,

(3) x2

_o (Xl' x2) x2 >lx2a u O.

Example 6, [77

The differential equation is

• o, J ,o • •

X + A (x,_)x + B (x,x)x + cx = 0.

In state variable notation,

_i = X2,

where

X2 = X3'

X3 = -- ax3 - bx2 - CXl " f'

A (xI ,x2) = a + a' (xI ,x2 ) ,

B (xI x2) b + b' , ,, = (xI x2)

f = a' x3 + b' x2(El, x2) (Xl, x2) •
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The _ matrix used in this example is the same as that used in the previous

example, where rI = a, r2 = b - c/a and r3 = c/a.

The V I - function becomes

2 2

V I = X tX = (b - c/a) x 3 + (cx I + bx 2) +

+ c/a (ax 2 + x3)2 ,

where

2

91 = -- 2(ab-c) x 3 -- 2 [a'(x I x2) x3 + b' (xI x2) x21 _cx2+ bx3 I"

The form of $ 2 is

92 = 2 [ca'

Thus, V and V are

(Xl,X2) + b b' (Xl, x2)] x2x3.

V =V 1
• " ! _1_ _'%

.v 2 - 2

2 2
") 't,-._l t_ v % v

x3-- _ _= _i,'_21 "" 3
+

- 2 cb' (Xl, x2) x _,

and

2

V = (b - c/a) x 3

2 2

+ (CXl + bx 2 ) + c/a (ax 2 + x 3 )
+

I

I

I

I

i

x2

[ca, xl,x2 
o

The conditions for asymptotic stability are

(l) ab-c > 0, b > O,

(2) a'(xl, x2) > 0 and

(3) ca' (Xl,X 2) + bb'

:_ _.... , _. _ ........ ,,. _:. /

+ bb' (Xl,X2) ] x21x2"

c > 0, a > O,

b' (Xl, x2) > O,

(xl, x2) > 0.
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Fourth Order Example_ 7

This example has been discussed by Cartwright but will be considered here

in the "light" of the Routh Canonical Form:

.... f(x)"" "X + aI x + x + a3 x + a4 x = 0,

where

(x) = a2 + b' (x) .

In state variable notation we have

XI = X2 ,

X2 = X3 ,

= X
3 4'

Since we have

X4 = -- alx4 - a2 x3 --a3x2 -- a4xi -- f'

f = b' (x2 ) x3 "

rI = a I ,

r2 = [a2- aB/al ]'

r3 : [aB/al --ala4/(ala 2- a3)_ ,

r o [ala4/(ala2-a3)],

then the _ matrix becomes

aI a4

ala 2- a3

Q _____

a 3 [ aI

- _i _ala2 - a3

0

- _aa_ " - ala 4ala 2- i3

0

0

I

0

0

. Vala2 al a 3

0

0

0

.,
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Thus, the V I - function is

2

Vl = Y t Y = YI
2 2 2

+ Y2 + Y3 + Y4

= [ a3 Va al_i la2 - a3
x2 +_/ al

y ala 2- a 3

2

_]+[ ala4

_la2-
a3

xI + x3

2

I
ala4Ix22lala4IEa3ala41xl2

ala 2 - a3J Lala2- a3 _i- ala2- a

where

VI = - 2al I a3x2ala 2 - a3

Therefore, we let 92 be given by

+

2

alx4 jala 2 - a3

a3x + alx4] "_ala 2 - a3 J

2 b' (x2) x3 (times)

V 2 = 2 b' (x2 ) x3 [ a3x2 + alx 4 ]

L ala 2- a3 J

The final Liapunov function is

= VI + V2

and

V =Vl+

2

= - 2 aI[ a3x 2 + alx 4 ]

[ ala 2 - a3 J

2a3

ala2-a 3

x2 x 3

_b' (x2)x2_2 + + 2al lh' (x2) x3dx3.
ala2-a_J

0 0

_'_" " , '-7 !--"-- ' )." ;_:_i ;,.; _ c : ,
J
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The conditions for asymptotic stability are:

al>0, a| a4 >0, (ala 2 -- a 3) > 0, a3>0,(1)

(2) aI a4 _ 0,
a3/al -- ala2 a3

x2

(3) f b' (x2) x2 dx 2 >0,

o

x3

(4) f b' (x2) x 3 dx 3 >0.

o
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INTEGRATION BY PARTS

SUMMARY

In this section we discuss the generation of Liapunov functions by a repeated

application of integration by parts. We discuss three variations of this procedure,

as given by Geiss and Reiss, Harris and Puri. The method of Geiss and Reiss begins

th 2
with a first approximation for V; for n order systems, Vl By integration by= -Xn.

parts, V I is evaluated. During the application of the integration by parts, the

system equations play the role of constraints along the paths of integration. If

V I is not a Liapunov function, a second approximation for V is considered, namely,

2 2

V2 = - (Xn +°<Xn-l)" The constant =<is chosen in such a way that V2 is definite,

if this is possible. By integration by parts, V 2 is obtained. If V 2 is not a

Liapunov function, then choose

2 Z 2
V3 =- (Xn + °<Xn-i + _ xn-2 )"

V 3 is obtained by integrating V3- The procedure continues until a Liapunov function

is given or the method fails. This method works best for low order systems.

In Harris' work, multipliers are formed by differentiating or integrating

certain terms in the given differential equation. These multipliers are then applied

to the original differential equation. The result from this operation is that cer-

tain terms in the resulting equation are perfect squares in the state variables, and

thus form V. Other terms are time derivatives of perfect squares, and still other

terms are reformulated by the integration by parts technique such that V can be

integrated to give a positive definite V - function. This method is applied to

second and third order systems.

Puri's method is basically a combination of Harris' method and the Geiss and

Reiss method, Puri's method is more systemetized and can probably be applied to

higher order systems with more ease than the other two methods. Puri's technique

involves both a multiplier and repeated integration by parts.
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INTRODUCTION

We are concerned with the study of stability of the equilibrium solution

(the origin in state space) of a dynamic system defined by

(1)
= F (_, t) •

The technique considered here for generating Liapunov functions can be applied to

certain nonautonomous systems as well as to autonomous systems, look at examples 5

and 17 in this section.

First, we will discuss the repeated integration by parts technique of Geiss

and Reiss _,2,_ *. And then the method of Harris [4], will be considered. This

discussion deals with the application of Harris' technique applied to a third

order linear system, with constant coefficients. The extension of Harris' method

to equations with one nonlinearity is given in examples 6 through 12.

Puri's method, [5] , will be discussed in more detail than the other two

techniques because it is more systematic. In the compendium of examples, the

applicability of this method is exhibited. Puri's method was used in

reference [6J to calculate quadratic moments of high order linear systems.

WORK OF GEISS & REISS

This procedure is a simple application of integration by parts to the problem

of obtaining Liapunov functions for ordinary differential equations. The autonomous

nonlinear system which is considered is given by

=! , ! = o. (2)

We want to find a positive semidefinite form _), such that

= (V_y_v)t ! _) = - _ (_) ' (3)

• The numbers in the brackets [] refer to the references at the end of the section.
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and

V =_ dt =- S_)dt, (4)

where V is positive definite. The integral in (4) is evaluated by integration by

parts. As we know, the integration by parts formula involving two functions of a

single variable is given by

u (t) d v (t) = u (t) v (t) -- fv(t) d u (t). (5)

The technique of Geiss and Reiss is concerned with the choice of y_) in

equation (3). For an n th order system, their first approximation for _) is

_) = x n, (6)

where the usual state variable notation is assumed to be used. The corresponding

V - function is

V I = (- x n) d t (7)

where (7) is evaluated by using integration by parts and considering the system

equation (2) as a constraint along the path of integration. If V I is a Liapunov

function, we stop the process. If V I is not a Liapunov function, we continue with

the following second approximation:

thus

2
_2 = - (x 2+ o_ Xn_l),

$2  /x2V 2 = - Xn d t - n-i d t ,

where the integrals in (9) are evaluated by integration by parts and _< is an

arbitrary constant used to make V 2 positive definite, if _ossible.

to be a Liapunov function, the third approximation is

2 2 2

_3 = - (Xn + o_ Xn_ I + (_ Xn__.).

(8)

(9)

If V 2 fails

(i0)



- 4 -

The procedure follows this pattern until a Liapunov function is found, or the

method fails.

The disadvantages of this method are:

(I) i_ is limited to _uasilinear systems of low order,

(2) the vector function _ _) in (2) must be such that it can be solved for

one of the state variables.

The advantages of the method are:

(i) The simplicity of the method,

(2) it gives insight into the construction of Liapunov functions,

(3) it can be adopted to handle equations containing arbitrary functions of

one or more state variables,

(4) it can be used to modify an existing Liapunov function, example i,

(5) it is useful in the construction of instability proofs and in considering

the concept of complete stability, and

(6) for linear systems, the method gives the Routh-Hurwitz conditions of stability.

Let us consider a problem of instability. For example, consider a third order

system. We select a V of the form

2 2 2
= ClX I + c2x 2 + c3x 3 , (ii)

where Cl, c2, c3 are positive constants, Thus V is positive definite. By

integration by parts, we obtain

V = fl(Xl, x2, x3; Cl, c2, c 3 ) • (12)

If it is possible to choose the positive constants, Ci, such that there are points

arbitrarily close to _ = O (equilibrium solution) where V takes on positive values,

then the system is unstable at _ = O.

Examples of the work of Geiss and Reiss are given at the end of this section.
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WORKOF HARRIS

The method of Harris uses integration by parts after applying certain multipliers

to the original differential equation. This procedure is applicable for low order

systems. In this discussion, we will apply the method to a third order linear system.

In this way we can demonstrate the mechanics of the technique, the reasoning behind

the technique, and how the technique can be applied to nonlinear systems. The applica-

bility of the method to nonlinear equations is considered in examples 6 through 12

at the end of this section.

Consider the third order linear, time - invariant system defined by

+ aI _ + a2 _ + a3x : 0. (13)

M,,le_n1_Tz_j(lqN,__j_,,_the integral of the first two term._ in (i_,_,,namely:

'x" + aI x) d t = x + alx.

Thus, we have

(x+ alx) (_ + al_) + a2x x ÷ ala3 x x + ala2(x) [ + a3x _ = 0.

Rewriting (15) gives

I( al_)2 a2(_)2 21 2
i d _ + + + ala 3 x + a3x x = "Z _'_ -- a_a2(x) "

Applying integration by parts to a3 xx, gives

a3x; = a - a3 (&)2
dt

Combining (16) and (17), we get:

i d [(_ + al_)2 + a2(_)2 + ala3x2 + 2a3xxl ffi_(ala2_a3)(x)2 "2 dt

Now, define V to be equal to the right-hand side of (18), namely

I ._/ = . (ala2_a_) (_)2.

(14)

(15)

(16)

(17)

(18)

(19)



-6 -

Thus, from (18) and (19), we can derive the expression for V,

2V (x + alx) 2= + (a2- aB/al)(X) 2
2

+ al/a3 (alx + x) . (20)

For asymptotic stability, a Liapunov function defined by (19) and (20) implies

the following conditions:

(i) ala 2 -- a3 > O,

(2) al>0, a2 >0, a3>0,

which are the Routh-Hurwitz conditions for stability.

A different multiplier for equation (i_) can be obtained by taking the

derivative of the last two terms of that equation. The result is

(a2x + a3_)(x" + alx) + (a2x" + a3x)(a2x + aBx) =

= a2x x" + ala 3 xx + (a2x + aBx )(a2x + a3x) + ala 2 (x) Z + aBx x'= 0. (21)

The term, a3 xx, in equation (21) can be rewritten as

a3 _ _" = a3 d(_ _0 --a3(_ ) _ (22)
dt

Combining (21) and (22), gives

i d la2 (50 2 + ala3(_) 2 + (a2_ + a3x) 2 + 2a 3 i kJ = -- (ala2-a3)(_)2
2 dt

Define V as

Thus, V is

= __ (ala 2 - a3)(_) 2.

(23)

(24)

Z 2 2

2 V = (a2_ + a3x ) + a3/al(al_ + _) + (a2- a3_i)(_ ) (25)

From (24) and (25), we see that the conditions for asymptotic stability are again

the Routh-Hurwitz conditions.

To sun_narize, we observe that Harris obtains multipliers by integrating or

differentiating certain terms in the differential equation (13). These multipliers

are applied to equation (13) and the result is that certain terms are perfect
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squares of the state variables; these form our V. Other terms are time derivatives

of perfect squares and thus produce our positive definite V - function. By con-

sidering the examples at the end of this section, we observe the samephenomenataking

place when Harris' method is applied to nonlinear equations with one nonlinearity;

except, of course, certain additional integral or derivative constraints are

introduced due to the nonlinearities.

WORK OF PURl

In general, we consider an n th order nonlinear, time-varying system which can

be characterized by

where

Xl = x2,

_2 = x3,

&n-1 = Xn,

Xn = - flXl - f2 x2 .... - fn Xn '

(26)

where

Xk+l = k

dt

k

d xI
, k = I, 2, ... , n ,

f- _ fi _' t) , i = I, 2, ..., n , (27)

fi _, t) = 0, t _ 0.

We assume that the system in (26) possesses a unique equilibrium solution,

= 2, whose stability is to be studied.

We first formulate Liapunov functions for linear, autonomous systems. The

linear equation is

alx I + a2x 2 + ... + anX n + an+ I Xn+ I = O, (28)
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and al,...,an+ I are constants. Denote the initial state variables at time,

t=0, as xl(O), x2 (0),..., Xn(0). The first step in generating Liapunov functions

is to apply a succession of multipliers to equation (28). Then through the use of

integration by parts, we can eventually generate expressions which are candidates

for Liapunov functions.

Multiply (28) by 2x I and integrate from 0 to t:

t2al_o x12 dt + 2a 2 XlX2dt

t

+. . 2 an+l ; XlXn+ I dt =O. /

--O

(29)

By repeated integration by parts, we have

t

o  lX2j+dt= _XlX2j - x2x2j_ I
+... + (-i)

and

t

XlX2j dt

O

= [XlX2j_ I - x2x2j_2 + ... +(-i) j-I

(30)

J-lxj Xj+ll +(-i) j x2 dt
j+l '

O

'
(31)

where j = i, 2, .... Let us adopt the notation

t

/oIk = 2 x kdt , k = i, 2, ... , n.

(32)

Therefore, applying (30), (31), and (32) to equation (29), there results:

all I - a312 + a 5 13 + .... = _ l(a2x_ + 2a 3 XlX 2 + 2a4xlx3+ ...

.. + 2 an+ I XlXn) -- (a4 x2 + 2aDx2x3L + ... ) + (a6x32 + 2ayx3X4+''')+'''] ||lot.

The right hand side of (33) is a quadratic form and thus (33) can be written as

(33)

all I - a312 + a513 + ...

(34)
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=_i

a 2

a3

a4

a 5

a6

a3 a4 a5 a6

-a4 -a 5 -a6 -a 7

-a5 +a 6 a 7 :

--a6 a7 -a8 :

-a 7 : : :

-o

a • 1

(35)

Similarly, multiplying (28) by 2x 2 , 2x 3 , ..., 2x n successively, and integrating

o ss

from 0 to%the following results are obtained:

__T_ - o.T_ _ ,-__T. 4- J- C_ T
-2_2 _4_3 _b'4 ........ n

I t
-a I 12 + a313 - a514 + ... + 0.I n = - [xt__<3x 1 (36)

O ,

- an_ 2 In-i + an In = _

The exact form of the last equation in (36) depends upon n being an odd or even

integer. The first few o4. - matrices are defined as

al

0

0

0

0 0 0 ,,,

a3 a4 a 5 ,, ,

a4 -a5 -a 6 ,, ,

a5 -a6 a 7 .,, , °<3_

0 aI 0 0

aI a2 0 a4

0 0 -a4 -a 5

0 a4 -a 5 a6

Q _

J t

• o , i

, l i

7)
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where _n can be obtained in the same fashion depending upon n being odd or even•

Now, the equations in (36) can be written in matrix form as:

a I = - (t)- QCo)j ,
(38)

where

a

al

0

0

o

-a3 a5

a2 -a 4

-a I a3

• Q

•.. -an_ 2

0

0

0

an

, !

Ii

12

13

In

(39)

where we denote a
m

If the matrix a is nonsingular, then equation (38) can be rewritten as

_I = - a-I [Q(t)_ _ Q(O)]

as a = b = bi . Equation (40) is now rewritten as

I I

12

i

In !

E t (t) _I_ (t)

t(t) s2 _ (t)

_t (t) _n_(t)

+

x t(O) S_i x (0)

_xt(O) S_2x (o)

x _0) S n X(0)

(40)

(÷:)

where

n

Si = I bij

j=l

.__J , i = i, 2 .... , n.

We now define some candidates for Liapunov functions, namely

Vi(t ) = x_t) Si x(t) , i = i, 2, .._, n.

(42)

(43)
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If the it h function, Vi(t), is a Liapunov function, then S_ is required to be

positive definite. Referring to equations (41) and (43), we see that

Vi(t) -- Vi(0) = - li(t) for i = I, 2, ..., n. (44)

Thus, the time derivative is

Vi(t) = li(t) = - 2x 2- i; i = i, 2, ..., n. (45)

Therefore Vi (t) is negative semi-definite. If S i is positive definite, then V i

is a Liapunov function for the linear system. The conditions for asymptotic

stability must then be the same as the Routh-Hurwitz conditions. This procedure

for linear systems is applied to a third order case in example 13.

We now consider an nth order nonlinear system represented by

Xn+l + fnXn + fn-i Xn-I + "'' + f2x2 + flXl = 0, (46)

where the fi's are defined in (27). Equation (46) is rewritten as

Xn+ I + anX n + ... + alx I = - F, (47)

where

F = (fn - an) Xn + "'" + (f2-a2) x2 + (fl-al) x1,

and the ai's are constants.

(48)

Equation (47) is multiplied by 2x I , 2x2, ..., 2xn successively and then integrated

in the same manner as in the linear case, the result being:

t

t F n n

li =- [xtSi __X] - 2 J I I bij (fk-ak)Xjxkdt ,
o j=l k=l

o

(49)

or, from (32),

t

l x2n-- i +2 1

o j=l

t

n

=-:: <:=-'=>x x=]='"Ix=-:=Io (5O)
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Multiplying equation (50) by a positive constant ci and then sunmaing over i

gives

t

I n 2
ci (xi+2

i=l

o

n n

kI=1bij(fk-ak)xjx )dt= I
o

Choose as a candidate for a Liapunov function

n

(51)

i=l
V(t) = I Ci_t_Si _ + (certain terms in the integral (52)

in (51)).

This V-function is positive definite if the _i are positive definite and if the

integral terms are at least positive semi-definite. The ci's are chosen such that

the time derivative is negative semi=definite. The actual procedure outlined above

will be demonstrated in examples 14, 15, and 16.

In summary, we feel that the method due to Puri is much more versatile than

that due to Harris, and more systematic than that due to Geiss and Reiss. Puri's

method can be applied to higher order systems, but the major difficulty is still

that of determining when a form is positive definite.

COMPENDIUM OF EXAMPLES

The first set of examples deals with the repeated use of integration by parts.

These examples come from the papers of Geiss and Reiss. The next set of examples

is obtained from Harris' thesis and deals with the generation of certain multipliers

which aid in the formulation of Liapunov functions. Also, included at this point

is an example by Ingwerson, _] , which explains in detail his application of the

multiplier method. The last set of examples is concerned with Puri's method, which

is a combination of both state variable multiplication and integration by parts.

Example i, _,_

The following example illustrates the usefulness of integration by parts to

modify an existing Liapunov function and its derivative.
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Consider the Duffing equation for a "hard spring":

x + ax + x + b

where in state variable notation, we have

3
X _--- O,

Xl = x2 ,

x2 = - Xl -

and a_0 and b> 0 .

As a candidate for a Liapunov function, choose

3
ax 2 - bx i ,

v,= ,j, + _1.
The time derivative of V I along the trajectories of the system is

_i =- ax_ - bx_ x 2.

which is negative semidefinite.

V2

Because of the term, bx3x2 , _I is indefinite• As a new candidate, suppose we choose

2
2 = - ax2 ,

V 2 becomes

fV2 dt = + f-ax _dt = _(-ax2)x 2 dt =

2 p( 2 2 4
= x---_ + J Xl+ bx3) Xl dt = x2 + xl + b x i .

2 --f- -_- _--

Thusd V 2 is a Liapunov function whose time derivative is negative semidefinite and

V-_as IIx I__+ _o • Therefore, the system is globally asymptotically stable•

In order to apply LaSalle's theorem on complete stability we need a V-function

whose time derivative is negative definite• In the above we have shown that com-

plete stability exists already; but as an example, we will run through the procedure

of obtaining a V 3 such that V 3 is negative definite. Suppose that there exists

a V3 such that

2
_3 =- a x_ - x I"
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Thus,

f_ 2V 3 = ax 2 dt -

= V 2 +

f2xI dt = V 2 + -Xl) x I dt =

_(x2 + ax2 + ) Xl dt.bxl 3

By integration by parts, the first integral becomes

_XlX2 dt = XlX2 - fXlX2 dt ------XlX 2 - fx2 dt

2 2
i x2 xl

= XlX2 + -_ ( 2--- + --i-- +b

4
xl

-._-- ) •

The second integral becomes

thus,

Saxlx dt = axlx I dt = a x I ;

2 2 4

V 3 = x2 + xl + b xl + XlX 2

2 2 4

2

f4 i x2)2+ b x dt = _ (Xl+ i 2 b (_a)xl4 ++ -_- (a + i/a)x I +

2j4+ x2 + bx I
_E

dt.

Finally, define V 4 as

where

V 4 = V 3 - J b Xl 4 dt

2 2 4
V4 = - ax2 - Xl - bxl

The V 4 - function is a Liapunov function which satisfies the conditions for

complete stability required in LaSalle's theorem.

Since Duffing's equation is such a popular example, let us continue to "pump"

it for information. If we replace b by -b, b > 0 , our system describes a "soft

spring." In this case V 2 is still a reasonable Liapunov function (in fact, it is

a measure of the total energy of the undamped system, a = 0). V 2 also tells us
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that all solutions originating in the region_J_ L defined by

2 /xI < ,

tend toward the origin. The origin is then asymptotically stable. This region

_J_b is not the complete region of asymptotic stability as shown in reference [3].

If x12 > i/b and XlX 2 > 0, then the system is unstable.

Example 2_ [_ Third Order Linear System

Consider the system

Xl = x2,

x3 = -- a3x3 -- a2x2 -- alXl,

where al, a2, a3, are constants. Let us select a negative semi-definite form

for V,

Then,

2
= _ x3

f2 fV = - x 3 dt = - x2x 3 + x2_ 3 dt

= _ x2x 3 + fx2 (-a3x3 - a2x 2 - alx I ) dt

a3, 2 _/_2 al 2

= - _2x3 - "/- x2 a2 J2 [2 dt - -2-- Xl

I

I We integrate the last term to get

5 '/ [ ;- XlX 3 dt -- _i x3 a3x3 + a2x2 + x3 dt

= 2-_ 2 x 2 + x3 + 2a3 x d

1 a 2 x + x 3 _ 2a 3 V
2a I 2
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V = al
2(a2a3-aI ) hxlIx21x3k

V is positive definite if

i) al • 0,

2) a3 > 0,

3) a2a 3 - a I > 0.

aI a2 0

a 2
a2 /a I + a 3 i

0 i a2/al

x I

x2

x3

Hence the system is asymptotically stable in the large. The above inequalities

are the necessary and sufficient conditions of Routh-Hurwitz.

Example 3 _ [2 _

Consider the system

x 2

Choose V3 = - x_

Third Order Nonlinear System

= x2

= x3

n

x3 = - (Xl + cx2) - bx3°

and using the integration by parts procedure:

V3 j2 /= - x 3 dt = - x2x 3 + x2x 3 dt

x2x 3 - /x 2 (Xl + cx2 )n + bx3] dt

7 n / n= - x2x 3 - bx_ /2 - (x2 + cx3)(x I + cx2) dt + cx3(x I + cx2) dt

2

= - x2x 3 - bx__/2 - n+l /(Xl + cx2) / -- cx_/2 -- bc x 2 dt
/ n+l
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= -- x2x 3

2

- bx2/_ 2
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n+l 2

(xI + cx2) j -- cx_ 2 + bc
/ n+l

V3

n+l

[ (Xln+l+CX2) + b2 x2 + x2x3 + c2 x 3 + bc V 3 .

Thus,

V 3 = 1

bc -I

n+l

E(xl + _x2) + + x_x_ +
n+l

and

2

Y3 = - x3 •

Rewriting V 3 gives,

V3 = i (Xl + cx2) + 1_!_ [x2,x3]

bc -i n + i 2 x3

Therefore, V3 is positive definite and the system is asymptotically stable

in the large if

(i) bc - i > 0,

(2) b > 0,

(3) n = 2k + I, k = 0,1,2 .....

where (i) and (2) are the Sylvester's conditions for [i i] . We have shown

that conditions (i), (2), and (3) are sufficient. In reference [3] , Geiss and

Reiss show that these conditions are also necessary. This work is repeated below.

2
Choose V_ =

x 2 Calculate V 2 via of integration by parts procedure:

/2 /V 2 = x 2 dt = XlX 2 - XlX 3 dt

/ix n ]= XlX 2 + I/b l(Xl + cx2) + XlX 3 dt
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f n+lXlX2 + i/b (x I + cx2) dt + _!_l XlX3 -- ___i|x2x 3 dt +
b J

f n
c/b x 2 (xI + cx2) dt

2 I n+lXlX 2 + i/b XlX 3 - i/2b x 2 + i/b (x I + cx2)

J n
c/b (x2 + cx3)(x I + cx2) dt + c _b

XlX 2 + i/b XlX 3 - i_2 _ x22 -
C

(n+l) b

dt +

/ nx3(xl + cx2) dt

n+l

(Xl+ cx 2) +

n+l _ n+ i/b (xI + cx2) dt + C2/b x 3 (x I + cx 2)

Looking at the last integral in V2, we have

/ n f
c2/b x3(x I + cx2) dt = c2/b x3 (-x3 - bx3) dt

2 2 2

= - c x3 + c V 3 .
2b

f

Therefore, we define a V 2 as

dt.

j n+l
V_ = V 2 - i/b (xI + cx2) dt

2
= xlx2 + 1/b XlX 3 - 1/2b x 2

n+l 2 2

_,(C i_)(xI + CX2) -- c2x3 + c V 3 ,

b(n+l) 2b

and

• / n+l 2 n+l
V2 = V2 - i/b (x I + cx 2) = x 2 -- i/b (xI + cx2)

l i

If we now take a linear combination of V 3 and V 2 , we obtain a definite V:

V = - c_V3 + V2 = c _ c

bc b

(Xl + cx2 )n+l +

n+l

+ 1/2 [Xl,X2,X3]

0 llb

lib

i

 c2]b llb
tl -bc]

l-bc

2
c_._ C

i - bc

c2

b

Xl

x2 ,

x3
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2 2 n+l

= _x 3 + x 2 - i/b (xI + cx2) .

We see that V is positive definite if o< >0 and _ > 0 If

°i > c2, c < 0 , and i - (b/c) (_- c2) <bc<l; then V takes on

positive values arbitrarily close to the origin. Thus, the origin is unstable;

and bc>l , b > 0 , and n=2k+l (k = 0,1,2,._)become

necessary and sufficient conditions for stability.

Example 4_ _ _ Third Order - Nonlinear

Consider the system

Xl = x2 ,

x2 = x3 '

x3 = - F(x2) x3 - ax2 - bxl.

Choose V 3 = X_ and integrate by parts:

j2 fV 3 = x 3 dt = x2x 3 - x2x 3 dt

2 f= x2x 3 + bxl + F(x2)x 2 dx 2
2

+

Now consider the last integral:

f 2a x2 dt = axlx 2 J x3 Ex3 + F(x2)x 3

axlx 2

2 _- 2 2

a

+ ax2_ dt

f F(x2 ) x3 2
dt.
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Thus, V3 becomes

V3 = x2x3 + IF(x2) x2 dx2
d

!

Define V 3 as

+ axl x2

2

+ b Xl
2

+

2 2 2

a x3 + a x2
"B- -2-- %-- -_--

+

f 2
+ a F(x2) x 3 dt.

/ 2V3 = V3 - a F(x2) x 3 dt
b

= x2x 3 + 01F(x2) x2 dx 2

2 2 2

+ a x3 + a x2 ,
F- --i- -%-- --f-

+ b x12 + ax I x2 +
2

and

m

m

V 3
b

J
We can rewrite V 3 as

!
V3 = 1 [ ]2i ax3 + bx 2 +

+
_o X2 I F (x2) - b/a] x2 dx 2 .

Thus, the system under discussion is globally asymptotically stable if

(i) F(x2) _ c _ b/a , c being constant,

(2) a > 0 and b > 0.

Example 5_ [3] Nonautonomous System

Consider the example given by

+ a(t) x + b(t) x = 0,

or in state variable notation

Xl = x2,

x2 =-ax2 - bxl.
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• 2 "

Choose V 2 = x2 • Integrating V 2 gives

V2 = f X22 dt = XlX2 -- / Xl_2 dt

= XlX2 + rf axlx2 dt + J'
bXl2 dt

= XlX2 + alXl . ax 2 + ax I xldt + dt.

Substituting for xI in the term axlx 2 , we get

2
-zV =̂ XlX 2 + ax I + a ax + x2 dt

T

+ I (b - $) Xl 2 dt.

Applying integration by parts again gives:

+ axi 2 + a x2 - x2
V 2 N_N 2 T -f- "-_

+ _a2 x2 dt + J(b-_)--5-2

d(a/b) dt
dt

2
x dt.
I

Now define V 3 as

which gives

V3 = V2 - - d(a/b) dt +
dt

+ f(b- _) Xl 2 dt ] ,

I or, rewriting we have

!

a 2
2

- x_,. -
T

• 2 2 2 2
= x 2 + 1/2 d(a/h_ X2 - a___ x2V3 b

f 2
(a2 /b) x 2 dt +

(b4) Xl 2 ,

2I

- (b-_) x i

-- (b-a) x_.
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Thus, the sufficient conditions for asymptotic stability are

(i) 2a2/b

(2) a2/b

(3) a >fk I

a _.m

b >fk 2

- i > O,

- 1/2 d (a/b)

dt

> 0

> 0

(4) b- a > O.

Example 6 _ [4]

Consider the second order case

where aI is a constant.

Define V as

Integrating V gives

V

- i >0,

_, kl , k2 are constants,

+ al_ + ae(x) x = 0,

Multiply the equation by _ to get

x x + al(_)2 + a2(x ) x x = 0.

= - a l(x) 2 "'x 2() "= X + a x x x.

Thus, for asymptotic stability, we require

(i) a I _ 0,

(2) a2(x ) > 0, x # O,

(3) V _ _ as x2 + _2

Example 7_ [4]

2 J= _ + a2(x ) x x dt.

The next second order case is a generalization of example 6,

+ al(x ) _ + a 2 (x) x = O.
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Multiply by _ to get

x + al(x)(_) 2 + a2(x) x x = 0,

as in the previous case, define V as

Integrating V gives

= - al(x)(x) 2 = x x + a2(x) x x.

aZ(x) "v = i/2(x) 2 + x x dt.

The requirements for asymptotic stability are

(i) al(x) > 0 , x # 0 ,

(2) a2(x) > 0 , x # 0 ,

(3) V-----_ _o as x 2 + _2_______ _ .

Example 8 [_

We consider a special case of the equation in example 7,

"'x + a I(_) _ + a2 x = 0.

Apply the differential operator,
oo

x d/dr , to the equation:

_'x° + _ (al _ + al_) + a2_ x = 0.

Let V be defined as

d [al(x) 2
"" (x)= - x dt = - a (_)

Integrating V gives

_ i(;_)2 d!_-xa "

• / _og
V = V dt = (_ x + a2 x x ) dt

_2 + a2(_)2 = i/2 [ [a1(_)_ + a2 x]2= 2

Thus, the conditions for asymptotic stability are

(i) ai(_) + _ d a,(_) > 0 if x _ 0 and _ _ 0,
di



(2) a2 > 0,

(3) V
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o2 _

as x q- x --_b. =_o .

These conditions are more restrictive than those in examples 6 & 7 because

of the presence of the derivative terms.

Example 9 a [4]

We now consider a third order example, namely

eoO QO

x + aI x + a2(x) x + aBx = 0,

where aI and a3 are constants. To form a candidate for a Liapunov function, we

first multiply the above equation by "x° + al x and then integrate to

get V:

(_ + alx ) (_" + al_ ) + (_" + al_ ) a3x + (x" + alx ) a2(x) x = 0,

or

d(x" + alx ) a3

(x + alx ) dt + (x" + al_) _ (alx + _) +

+ (_ + al_ ) (- a3 _ + a2(x ) x) = O,

al

where

dE1 ala3 2 a 1V = _ _ (x" + + _i (x + alx) + (a2(x) _i_ x2

a3 (_) 2 - ala 2 (x) (x) 2 + i (_) 2 a2 (x)

= [a3 - ala2(x) + a2(x) ] (_)2"T
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2v = (_ + al_)2 + a_ (x

aI

2

+ alx)

the required conditions for asymptotic stability are

+ ala2(x) - a3

aI

_2 .

(i) ala2(x ) - a3 - _2(x) > 0 , x_0,

(2) ala2(x ) - a3 > 0 , x _ 0 ,

(3) a I > 0 and a3 > 0.

Example I0, [4]

Let us consider

mere • B. st •

x + al[x ) x + a2 x + a X = 0_
3

where a2 and a3 are constants. Also, let us say that

where aI is constant. The multiplier in this case is

al(_) = aI + /_(1)

a2 "_ + a3

Thus, we have

"x" (a2 _ + a3 x) + al(a 2 _ + a3 x) _ +

or

+ _ (_)(a 2 x + a3 x) "x + (a2 x + a3 _)(a 2 x + a 3 x) = 0,

+

d I a2_/_ (_)2 + ala32

2

a3 _ "x" + aI a2(_)

(1)z 1 ]+ _L (a21 + a3 x)2 +

+ a2 _ (_)(_)2 + a3 H (_) _ _. = 0.

Since x "x" = d (x _) __ (_)2 , the above equation becomes

dt

d I_ 2 a_a3 (x)2 x x" 2 1(_) + + a3 + _ (a2x + a3 x) +

+ a3 _ (_) _ _ = a3(_ )2 _ al a2 (_)2 _ a2 _(_)(_)2.
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Thus, define V to be

and
• 2

2V = [a2 - a__3 a3
all (_)2 + __al (al_ + _)2 +

P

+ (a3 x + a2 _)2 + a3 / _
(1) dt.

L/

Therefore, for asymptotic stability, we require

(i) a2 - a3/al > 0,

(2) a3 > 0, aI > 0,

(3) _ (x) > 0 if x 4 0,

(4) ala 2 + a2 _ (x) --a 3 > 0
if x #0.

Example ii, [_

The next case we consider is

"_ + aI _ + a2 x + a 3 x +

where al, a2, a3 are constants. The multiplier is

(x) = 0,

oo

x + a I X

Therefore we get:

(_. + al _)(_. + al _) + a2 _ _ + al a2 (_)2 +

+ a3 x x + aI a3 x x + _ (x) _ + al H (x) x = 0,

or

__ a a + al/f(x) xdtd 112 (x + a I _)2 + a2/2 (_)2 + "-2---'i_3(x) 2
+

o•

+ ala 2(_) + //(x) x = O,
Ii
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or

i d

+ aI = a3

The V-function is then chosen as

_ ala2(_)2 _ (x) x.

o2

2V = (_ + alx) 2 + a3/al (alx + _)2 + (a2 _ a3/al) _ +

where

+ aI / _ (x) dx,

• )2V = - (ala 2 - a3) (_ -

Therefore, the conditions for asymptotic stability are:

(i) aI > 0, a 3 > 0,

(2) ala 2 - a3 > 0,

(3) / _ (x) d x > O,

(4) _ (x) "x > 0 if x # 0.

Example 12_ _4]

Consider:

"x" + al_ + a2(x ) x + a3 x = 0,

where a I and a3 are constants and a2 is a function of X , while in example

9, a2 was a function of X. The multiplier is _ + alx . Thus

(_" + aI _)(x" + alx) + a2(x) x _ + ala 3 x x +

+ a3 x _ _- aI a2(x)(x) 2 = O,

or

1/2 _ (aI _ + ._)2 + aI a3 x2 + a 3 dt --

+ a2 (x) x "x + al a2 (_) (i)2 = 0,

(x)2 I +



°

- 28 -

or

1/2 d--_ i x +-_)2 + al a3 (x)2 + 2a 3 x x +

+ la2(x) - a31al ] x W = - (ala2(_) - a3) (x)2 •

Let V be given by

2
= _ (ala2(_) - a3) (x) ,

a3/a I (_)2_ +

where

2V = (alx + _)2 + a3/al (aI x + x) 2 + 2(x) al

The conditions for asymptotic stability are

(i) ala 2 (x) - a3 > 0 if x # 0,

(2) aI > O, a3 > 0,

(3) V--_ =_ as x 2 + _2 + _2 _______ .

Example 13 a [_

Ingwerson considers a third order system from control theory which has a

nonlinear gain and a derivative feedback element. The problem reduces to the

consideration of the following equation of motion:

•o 3

"x" + bI x + (b2 + b3 c2) x + b 3 x + b4 x

2 .2 3 .3
+ 3b 4 c2 x x + b 4 c2 x = 0,

where bl, b2, b3, c2 are constants. We wish to study the stability of the

equilibrium solution. Ingwerson used a "nmltiplier" or "integrating factor"

approach to generate the Liapunov function used in the analysis. We present

this method in the following paragraphs.

Let the equation of motion be divided into linear and nonlinear parts:

[LJ =- "_" + b I "x + (b2 + b3 c2) x + b 3 x,

•

+ 3b 4 c2 x x +
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and
3 2 . 2 2 3 3

[Nj m b4 (x + 3c 2 x x + 3c2 x _ + c2 x ) .

First consider the equation [Lj = 0. The first and third terms of

can be integrated if we multiply by X. Therefore,

_" [L] _ d-_ 7 + (b2 + b3 c2) + bl _2 + b3 x x = 0

The term in the square brackets is not definite and thus cannot be used as a

Liapunov function. The second and fourth _erms of ILl can be integrated if

is used as a multiplier:

d I bl_2[Lj _- d-_ 2
÷ b3x2 ] + ....

2 J x x + (b2 + b3 c2) _2 = 0.

The bracketed term in this expression is also semi-definite, Thus, we try a

linear combination of X and _ : namely,

(blx + _) ILl = d x 2 + (b + b2 + b3 c2) x blb 3 x +
dt 2- -2- 2--

.... 2 .2
+ bI x _ + b3 x x + bI x + bl(b 2 + b3 c2) x = 0.

Since

x "'" ..2 d(_)x _ x = dt and

then the above can be written as

(bI x + "x) [LJ

Thus, for the linear equation,

d_Le 
dt = x x + (x) 2 ,

_ 2 .2
d q_b I x _ + (bI + b 2 + b3 c2)x +
dt 2

+ (bl b2 + bl b3 c2 - b3) _2 = O.

ILl = 0 , we choose the above bracketed term

as a candidate for a Liapunov function. Its time derivative follows automatically

from the above equation. Therefore V L and VL are

2
V L = _2/2 + b I x _ + (bI + b2 + b3 c2 )x2/2 + b 3 x x +

2

bl b3 x /2 ,
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and

VL = - (bl b2 + bl b3 c2 _ b3 ) _ 2

Consequently, the following conditions must be fulfilled if the linear part is

asymptotically stable:

(i) blb 2 + blb3C 2 - b3 > 0,

(2) blb 3 > 0,

2

(3) blb 3 (b 2 + bBC 2) - b 3 > 0.

Ingwenson now applies the same integrating factor to the nonlinear part,

IN] , of the equation of motion. Thus, after applying the multiplier,

b I x + _ to EN] and then integrating by parts, the result is

3

d I 2 _3 b4c2 .4 ,_ 2 2(blx + _) EN] _ _ b4c 2 x + 4 x + c2b 4 x

+ b 4 x 3 x + b I b 4 x 4/4 ] + b4(blC 2 - l)(3x 2 + 3c 2 x x c_+

+

_2) _2 .

Let the bracketed term be V n Computing the partial derivatives,

"_Vn and _Vn
_x "_ '

we see that Vn is monotonically increasing in x and x and is zero only at

oB

x -- x = 0. Thus, Vn is semi-definite in x, x, and x. The time derivative

of V n is

Vn b 4 (blC 2 i) (3x 2 2 _2) . 2= - - + 3c_ x x + c2 x .

Now for the original equation of motion, ILl + EN] = 0, we choose

as a Liapunov function

V = V L + V N,
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V = blb 3

2 2

x/2 + b3 x x + (b I + b2 + c2 b3 )

.2

x/2 + b I _ x" +
/

..2
+ x

2
• o3+ bl b4 x 4 + b4 x3 x + 3/2 c2 b4 x2 _2 + b4 c_ x x +

3 -4
+ b 4 c2 x__ ,

4

where the time derivative is
B

=- I bl b2 + (b I c2

is non-positive for:

i) b 3 + b4 (3x + 3c 2 x x + c2

bl b2 + (bl c2- i)I b3 + b4 (3x2 + 3c2 x x + c2 x2) I > 0.

Thus, the system is asymptotically stable if the linear part is asymptotically

stable and the above inequality is satisfied.

Example 14 _ Third Order Linear Case

Consider a linear, time-invariant, third order system

aI x I + a 2 x2 + a_ x 3 + a4 x4 = 0,

where x i = diX/dt- i. We now apply the various multipliers, 2xl, 2x2, and 2x3

to the equation and integrate:

/to_ 2x I (aI xI + a2 x2 + a 3 x 3 + a4 x 4 ) dt = 0,

or t
-]

al I1

where [- -j o ,

_o t
Ik = 2 x2 dr, and o<I =

a 2 a3 a4

a3 -a 4 0

a 4 0 0



Thus, we have

al Ii

where x T =

o t 2x 2

or
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The other analogous expressions are:

(a I xI + a2 x2 + a3 x3 + a4 x 4 ) dt = 0,

a2 12 - a4 13 I tIx T _Z x _ =
O

and

or

2x 3 (al Xl +

aI 0 0

0 a3 a4

0 a4 0

- aI 12 + a3 13

a2 x 2 + a3 x3 + a4 x 4 ) dt = 0,

0

t

[ x T -_3 xj 0<3 = al

o 0

The above equations can be written as a matrix equation

0 Ii

12

13

R(o)

a I -a 3

0 a 2

0 I -al

Q (t)

aI 0

a2 0

0 a4
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where QT =

Solving for

'1i2 =

[XT_ 1 x , __ 12 x,w _3 x_.

Eli, 12, 133 Yields

2
a2a 3 - ala 4 a 3

al(a2a 3 - ala4)

a3a4

0 ala _ ala 4

0 a _ ala 2

(R(o) Q(t))

Let A = a2a 3 - ala 4 and choose V as follows:

v--x t s_3 x

-t 31 -i 32 33 --

= x t i

a I A

3 2
aI aI a 2 0

2 2 2 2

al a2 aI a3 + aI a2 a I a4

2

0 a I a4 aI a2 a4

X

where

2
= _ 2x 3 .

V is positive definite if _3 is positive definite; thus, the required conditions are

(i) a I > 0, a3 > 0, a4 > 0, a2 > 0 ,

(2) a2 a3 - a I a4 > 0,

which are the Routh-Hurwitz conditions for asymptotic stability.

Example 15, [5]

We now consider a third order nonlinear differential equation:

lJO

x + g3 (_) _ + a2 x + aI x = 0,

or in index notation,

aI xI + a2 x2 + g3(x3) x 3 + x4 = 0,



where x0
i

f = (g3

we have:
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= _x /dt i . Also, we assume g3 (x3) has the form

-a3) x3 , where a3 is a constant. From equation (49) and example 14,

t jot,l ,12
o

XlX 3
dt t +f(x3) x3x 2 dt

al _Jo

_ 2a3 _t 2
x 3 dt.

L1 t 212 = - s 2 x - (x3) x2x 3 dt 2 f(x3) x 3 dt,

o

_=_{_____] _, _<x_>x_x_a<_ _<x_>x__<,
AJo _Jo

o

where Si and A are defined in example 14.

Ii; thus, we will let C I = C 3 = 0 and C2

as a Liapunov function

12 and 13 are less complicated than

= i in equation (52). Hence, we choose

_o t

V(t) = --XT--_2x + 2a3 f(x3) x2x 3 dt
A

where x = o

x2

=--XT s2 x + _J f(x3) x2 dx2'

o

is the equilibrium solution. The time derivative of V is obtained

from the equation for 12 and from equation (45):

The conditions for asymptotic stability which are derived from V and V are

(i) a I > O, a2 _ 0, a3 > 0,

(2) a2a 3 - aI > 0,

(3) f(x3) = gB(x3) -- a3 >i" 0.
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Example 16, _]

Consider a nonlinear differential equation with three nonlinearities:

"_" + g3 (_) "_ + g2(_) x + gl(x) x = O.

Rewriting in index notation, we have

alx I + a2x2 + a3x3 + x4 = (aI -gl ) xI + (a2-g2) x2 + (a3 - g3) x3,

where al, a2, and a3 are constants. Fromequation (49) and example 14, we

write 12 as

t t

j 2a/12 = - s 2 x 3 (gl - al) x I x2 dt +

A
o o

t
fl

_2Ao3 J "

o

t

2 P

(g2 - a2) x 2 dt - 2a3 /

A Jo
(g3 -a3)x2x3 dt +

t

f 22 (g3 -a3) x 3

A
o

dt

t

--2--_ / (g2 -a2)x2x 3 dt

o

+

t

- -2A _ (gl -al) XlX3

The last integral can be written as

dt.

t t

; (gl" al)XlX3 dt = (gl- al)XlX2--/ FdglL_I Xl

o o

+ gl

where _ = O is taken as the equilibrium solution. We now choose V(t) as
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oxl (gl al) xI dxlV(t) = XTS_X + 2 (gl -al) Xl x2 + 2a--3
A

+

÷

ox2[
2 (g2 - a2) + a3 (g3 -

a3) _ x2 dx2;

or from the equation for 12, we have

_o t 2
V(t) = - It - 2a__3 (g2 -a2) x2

A

dt +

2
x 3 dt +

_t

- 2 ]/dgl

Jo t_ Xl + gl

Thus, the time derivative of V(t) is

_(t)

al) x 2 dt.

2

= - 2x_ -- 2a3-- (g2 - a2) xi_ " __2 (g3 - a3) x 3 +

A

+ 2 Fdg - ] 2_dxl Xl + gl x2,

3g2 - gl -

9

dg I Xl[ - 2 (g3 - a3) x_

The conditions for asymptotic stability are

(i) aI , a2 , a3 > 0,

(2) a2 a3 - aI _ 0,

(3) gl al ' g2 a2' g3 - a3 > O,

(4) aBg 2 - gl - dgl x I _ 0.

dx I
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It should be noted that the first two terms in V(t), namely

I

I
I

I

I

I

I

I

i

x t ___x + -_-2 (gl
- al) XlX 2

can be written as

x s* x where s* = i

-t - _ - -_ A

ala3 gl 0

2
gl a3 + a2 a3

0 a3 i

Stability also requires that _2" be positive definite.

Example 17 _

Now we consider the same nonlinear system as in example 15, except for

the addition of a time-varying forcing function, p(t). The equation is

°_ + g3 (_) _ + g2 (_) _ + g{_) x = p(t),

or in index notation

alXl + a 2 x2 + a3 x3 + x4 = (al -gl) Xl + (a2 _g2)x2 + (a3 _g3) x3 + p(t),

where al, a2, a3 are constants. Again, let us consider the formulation for 12:

_o t= -- 2a3 (gl -12 - _xts2 _xJt
o_ _-

- 2a---_3 (g2 - a2) 2 -

al) XlX 2 dt +

p(t) 2]_g2 - a

dt +

t
(g3 - a3) dt +

_t

A

I(g2 - a2) + a3 (g3 - a3) I x2 x3 dt +

t_A a3
(gl - al) Xl x3 dt + (g2 - a2) +

i _ p2(t) dt

+ Z_ (g3 "a3) J

E •
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If there exists certain positive constants K I, K2 and K3 such that

(i) g2 " a2 >f k2

(2) g3 - a3 >f k3

(3) 1/4 _/K3_-a31k_ p2 (t) dt _-- k I

then the Liapunov function can be chosen as

+

4+

+/oxiX (g2 " a2) + a3 (g3 -

E ;oE2 k I - i__ a3

A gP_ - a2

(gl - al) Xl dxl +

a3) ] x2_x2 +

+ i 3] p2(t) dt_
g3 - a

and

_(t) = - __ a2a3 - gl
- dgl x11 - 2a3 (g2 - a2)

3 T
times

x - p(t) ]2 2
g2 - a2j -- _ (g_ - a3) (x3 - g3- a3

was derived from the equation for 12 • (The notation in this example is the

same as in the previous examples.) For asymptotic stability we require:

(i) aI , a2 , a3 > 0,

(2) gl "al' g2 " a2 , g3 a3>/ k3 > 0 and g2 - a2>f k2 > 0,

(3) _i/_) (a3/k2 + i/k3 ) /t

o

p2(t) dt _ k I,

(4) a2a 3 - gl - (dgl/dxl)xl _/ 0,

(5) a2a 3 - aI > 0.



(i)

(2)

(3)

(4)

(5)

(6)

(7)
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THE VARIABLE GRADIENT METHOD

SUMMARY

In this section the variable gradient technique of generating Liapunov func-

tions is discussed. Modifications of this method are also considered. A large

compendium of second, third and fourth order examples is given at the end of the

section.

INTRODUCTION

In 1962, Schultz and Gibson published the results of Schultz's thesis investi-

gation, [I]* . The idea behind their procedure is based on the results of Massera's

work concerning the existence of Liapunov functions for certain asymptotically

stable systems. If a V-function exists, then we assume tha_iits_ gradient,_,

also exists. If ___V is known, then V and V can be determined. Therefore, their

procedure is to choose the form of the variable _radient, V__V, such that the

line integral

fv(_x) vv -dx

is independent of the path of integration and such that V and V satisfy the proper

condition@ of definiteness and closedness. This method of generating Liapunov

functions essentially begins in the middle of Ingwerson's procedure, which is

described in section _j of this report. The systems which will be analyzed

th

by this method are n order, nonlinear, autonomous systems described by:

= f (X) ,

f(o)--o.

The discussion of the variable gradient method is presented in many references;.

such as, references [i] through [7].

(1)

of the section.

In reference [8].u___ri begins his analysis by choosin_ a simpler form for_____

* The numbers in the square brackets,[], refer to the references at the end



- 2 -

VV than that of Schultz and Gibson. For certain problems this choice for VV

gives results with more ease than the original method. Also, Puri makesuse of

matrix algebra to a greater extent than Schultz and Gibson. The disadvantage

of Puri's simplification is that it is not as versatile as the original method.

Ku and Puri, [9_ and _ , modified the variable gradient technique. In

their analysis of equation (i), they assumeda "generalized" quadratic form

for V; namely,

v--xTS x.

The S matrix is symmetric and the elements are functions of the state variables.

The elements of S are chosen such that the B matrix in

is a form which is very nearly that of the matrices used by Schultz and Gibson

in the variable gradient method. Combining equations (i) and (3), Ku and Puri

form the following equation for V,

=_XTT x .

Therefore, the equilibrium solution _ = O, is asymptotically stable if T is

negative semi-definite and S is positive definite, along with certain closedness

properties being satisfied. The T matrix in equation (4) is called the

Liapunov stability matrix. The authors describe two procedures to determine the

stability conditions of the system in (I) from the properties imposed upon the

S and T matrices. A detailed discussion of these procedures is found in Mekel's

thesis, reference _ .

In reference _ , Puri combines some of the concepts of references [8] and

[9] to arrive at a more systematic approach for the generation of Liapunov func-

tions.

(2)

(3)

(4)
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In the examples at the end of the section, a linear, time-varying system is analyzed°

by this method.

The work of Ho, Goldwyn and Narendra, _ , _ , and _ , considers a

procedure which is similar to the variable gradient method. This new method

generates Liapunov functions for nonlinear systems of low order by generalizing

the concept of a common Liapunov function for a linear, variable-parameter system.

The common Liapunov function is a V-function which is a quadratic form, _xT P _,

where the choice of P depends upon the intersection of certain sets of matrices.

This choice of V is more useful than choosing an arbitrary positive definite

quadratic form; and the problem of determining the intersection of sets is more

tractable than some of the other methods of finding V-functions.

At the end of this section is a sizable compendium of examples, due in

a large part to the Ph.D. thesis of Mekel, _ .

WORK OF SCHULTE AND GIBSON, [i] THROUGH [_

We want to analyze the stability properties of the equilibrium solution,

= O, of equation (i). The variable gradient technique of generating Liapunov

functions begins with the choice of a certain form for V V, namely,

all

a21

an-l, i

anl

a12

a22

al,n-i

a2,n-i

aln

a2n

an.l, 2 .... an_l,n_ I an-l,n

an2 • . an,n_ I ann

v_!v= Bx

Xn- I

x n

(5)
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The elements in B have the following form:

_ij = bij + cij(Xl, x2, "''' Xn-l)'

(i # j)

b ij = constants, for i, j = I, 2, ..., n,

and

aii = bii + cii(x i),

for i = j = i, 2, ..., n-l,

ann = 2.

The state variable, xn , is treated as a special case because xn usually

appears linearly in the equations of control theory. Thus, if ann = 2, we

2

have x_ appearing in the V-function as x , with a unit coefficient. Once
n

V V's form is chosen, then V can be obtained from equations (i), (3), and (5).

Also, from equation (5) and the line integral

V _.

ox _ ° dx ,

we can determine V if the 'independence of path" restriction is imposed. From

calculus, we know that the integral in (8) is independent of path if V V

satisfies the n(n-l)/2 curl equations:

(6)

(7)

(s)

j

_xj _ "_x i

th

where __V)i is the i-- component of V V. The object of this procedure is

to choose the constants, bij , and the functions, cij , in equations (5), (6),

and (7) such that V is a Liapunov function with the desired properties.

(9)
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The following is a stepwise procedure to be followed in the application of

the variable gradient technique.

l)

2)

Choose V V as in equations (5), (6), and (7).

Compute V = (W)T f _). By choosing the bij's and cij's to be

certain quantities, make V negative semi-definite. (This is

basically a trial-and-error procedure).

3) Apply the n(n-l)/2 curl equations, (9), to V V to determine the

remaining unknowns.

4) Recheck V to see if it is still negative semi-definite.

5) Determine V by the line integral in (8) and find the region of

asymptotic stability. Since the line integral is independent of

path, the r_ost ¢or:_enient method of evaluation is

x I x _xV3 o_i:o :oV = _V dx I + _VX_z+ f 3 dx 3 + ... + aV

TXl _x2 4 _x--n

(x2=...=Xn = 0) (X3<-..._ xn=0) Ix4=...=Xn=0)

6) Check the closedness of V; that is, we must show that

Lira V_) = _.

E_

Puri assumes that the gradient of a

PURI'S WORK

We again consider equation (i).

Vl-function has the form given by

WV I = B x ,

where B is sy_netric and bnn = I. Then, VI is formed:

Vl -- (VVl)T__= xTBTA_ x = xTT x,

dEn.

(io)

where f_ in equation (i) is written as A_ _)x, and matrix T : B T A. Since VI
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J

is expressed in a "quadratic form", then the matrix function _ can be written in

an equivalent trian_

re --
m

ular form:

tll t12

t22

0

0

0

t13

t23

t33

tn-i ,n-i

tl,n

t2,n

t3,n

!tn-l,n

0 tnn

(f2)

rr unknown wn am
number of independent relationships involving the elements of B_. If all the

elements in T e, except one of the diagnonal elements, are set equal to zero, we

have the required number of relationships involving the elements of B; and by

our choice of which element of T e is nonzero, matrix T e can be made semi-definite.

We next check the elements of B to see if the curl equations, (9), are satisfied.

It is at this point Puri's modification may cause trouble° In order to check the

curl equations, the synlnetry of B may have to be altered and a new V-function

formed. Then, the next step is to recheck the semi-definiteness of Te. If this

"checks out", we integrate V V as in the previous method to obtain the final Liapunov

function, V. In the examples, Puri's modification will be amply illustrated.

THE WORK OF KU AND PURI_ [9] and _d

th
Ku and Puri consider the stability of the equilibrium solution of a n

order, autonomous system described by

(n) (n-l)
x + an x ÷ ....+ alx = 0, (13)

where the a's are functions of the variables x, x "I'(_
(n-i)

,.,., x . The symbol

(i)
x is defined as the i-th derivative of x with respect to t. In the usual
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matrix formulation, equation (13) is written as

__-- A(x)x = A x, (14)

where xI = x, x2 = x (I) , x 3 = x (2),....., xn = x (n-l) , and

0 i 0 0 • . • 0 0

0 0 i 0 • . • 0 0

0 0 0 i • . • 0 0

0 0 0 0 0 i

-a I -a 2 -a3 -a 4 .... -an_ I -an

A

m
(15)

where T is a matrix function to be determined. For the asymptotic stability of

= O, we require that _ be positive definite and T be negative semi-sefinite,

: T x, (17)

_T+ _ assu_=_,,,_+h=e_.._.........eh_ coordinate system, is such that the equilibrium solution is

x = 0.

The form of the Liapunov function for equation (14) is assumed to be

V = _xT S _, (16)

where S is a symmetric matrix function of _. The type of elements in matrix

are obtained from the authors' experience with the variable gradient technique•

It is for this reason that we place Ku's, Puri's, and Mekel's work in this section

of the report. An example of the _matrix used by Ku and Purl will be given

In Mekel's thesis _ , a slightly different form of _ is used in mostshortly•

of his examples•

Similarly, the time derivative of V related to the system in (14) is assumed

to take on the form
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along with certain closedness properties of V being fulfilled.

The authors consider two formulations for V. The first formulation is

x + xTS x,

C_ATS_+SA +[) x=_XTTlX,

where

(18)

T I = A T S + S A + S . (19)

The second formulation of V is derived by first computingVV = B _ and then forming

where

= (V--V)T_ = _T (_T A) _ = _T _2 _, (20)

T2 = B_TA_. (21)

The matrices _I and _2 must be negative semi-definite. To insure that this is the

case, the elements of T, Tij , must satisfy the following conditions:

Tii _ 0, for i = 1,2,...,n,

Tij + Tji = 0, for i _ j and i,j = 1,2,...,n. (22)

As we will show later, Mekel in reference _ verifies that the above formulations

give identical V and V.

The form of the S matrix used by Ku and Purl, in [9_ , for a fourth order,

autonomous system is

S

kll + YII
2

Xl

+ fi___22

k12 2x I

k13 + f13

2x I

k13 + fl_
2x I

k12 + f12

+ Y22

k22 x_

k23

k2.4

k13 + f13

k23

k33 + Y33

2
x3

k34

k14 + f14

k24

k34

Y44 + k+i
2

x4

(23)
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formulation the T2 matrix is derived.

First Formulation

The nonlinear equation is

•.. ]..x + 3 + (x, _) x +

The matrix A in equation (15) becomes

A

where f = f(x I ), g

given by

0 i 0

0 0 i

-_x I -g/x 2 -(a 3 + _)

g(_) + f(x) = o. (25)

(26)

= g (x2) and /= /(Xl_2). The S matrix in equation (16) is

where [ii is an even function defined by

xi yi(xi) dxi i = 1,2,3,4.

(24)
Yii =

L

Since [ii is an even function of xi, then Yi is an odd function of xi. The

kij's are constants to be determined and the fli'S are unknown functions of x I,

The Yi, kij and fli are chosen such that V is a Liapunov function. The B matrix

in equation (21) which is derived from (23) has a form nearly like those considered

by Schultz and Gibson.

In the following discussion, the equivalence of the two formulations for

is presented by considering examples of Mekel.

MEKEL 'S WORK _

The two formulations for obtaining the time derivative of V, as described

above, are now illustrated by a third order nonlinear system with three non-

linearities. In the first the E1 matrix is derived and in the second
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S

kll + Y1 + Y

2
x I

k12 + fl/x I

k12 + fl/x I

k22 + Y2 + Y

k13 k23 i

k13

k23

(27)

where the kij s are constants and Yi = Yi(xi), fl = fl(Xl) and Y = Y(Xl, x2).

These constants and functions are to be determined such that V is a Liapunov function.

Since V is a "quadratic form", the matrix T I in equation (19) can be replaced by

an equivalent T I defined by the expression (2 S A + S_). Thus, from (26) and (27)

we have: ./i!:;!!_

and

2 S A = 2

-k13 f/x I

-k23 f/x I

-f/x I

kll + YI + Y k13

2

xI x2

k12 + fl k23

xI x 2

k13 - g/x 2

k12 + fl _ + #)
_ii klB(a3

k22 + Y2 + Y _ k33(a3 +_)
2

x2

k23 - (a3 + _)

S =
u

Y1 ' x2 +Y 2(YI + Y) x2

2 3
xl xl

fl'/ - fl/ 2 x2

x I Xl_

-t

 l/xI - fl/x x2

Y2' x3 + Y _

0 0

2(Y2 + Y) x3

0

0

II i lI

where is defined as d___ or d___. Again, because V is written in quadratic form,

dx I dx 2

we have an equivalent form for _S"
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0 i/x I BY YI + Y 0

Se = 2 Y_/2x f_/ " fl/x I/x2

Y2 + Y (30)

-- i _ i X 2

0 Y_ /2x2 0

Combining equations (28) and (30) we form an equivalent T I : "

[ -- k13 f/x 1 [ kll + /=...._ _ _ k12 + fl ..

I I xl _xl _, i _. xI

T.,*=_, I Y1,_ _=:_f/x_.I _._"-_-' - _=_e,,x=I_, ..,-1_.y

Applying conditions (22) to equation (31), the unknown terms of _1 e can be

determined. Thus, we let

k13 = 0.

If / is constrained to be a positive function, then element T33 _ 0 when

k23 = a3 •

For TI3 + T31 = O,

k12 = 0

and

fl = f 7- f (Xl).

For T23 + T32 = 0,

k22 = a2 ,

_Y2-2 "x),
_.x2 - g_ 2

and _y

_ k13(a3 +/)

k33(a 3 + _).

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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From (37) and (38), we have by integration

and

I x2 = 2G(x2) ,Y2 = 2 g(x 2) dx2

y = a3 X2x2 (Xl, x2) dx2.

For TI2 + T21 = 0,

kll = 0,

and

%YI = 2a3 f(xl).
_xl

Integrating equation (42) gives

_oxlYI = 2a3 f(xl) dxl = 2a3 F(xl)"

The remaining term, I _ , in TI2 can be obtained from (40):
xI _Xl

i BY a3 f_Ix2
x-_ _x-_ = x--_ x2 _ _ (Xl,X2) dx 2 •

4 -ax I

Therefore, an equivalent matrix for T I _ can be written as:

a3 x2 # (Xl,X2)
X 2 _x2

0 Xl Jo _Xl

T = 2 0 a3 g(X2) _ f' (xl)

x2 -[

0

0

0 - /(Xl,X 2)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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where V =_XTTX. Matrix S_ in equation (27) becomes

S __

u

YI + Y

2

x I

f(xl)/xl

f(xl)/xl

a2 + Y2 + Y
3 2

a3

0

a3

where Y2' Y and YI' are defined by (39), (40), and (43) respectively. Since

V = xT _ x, we have

x 2
O

V = 2a3 F(xl) + 2 f(xl) x 2 + 2G(x2) + 2a3/ _ (Xl,X2) x21x 2 +

o

(46)

(47)

2

+ (a3 x 2 + x 3)

From (45), we have the time derivative of V,

" _a g(x2)/x2 _ 2 _ 2V = - 2 3 - f'(xl) x 2 -- 2 (Xl,X2) x 3 +

x2)]
_o x2 X2d

+ a3 x2 "aXl J x2.

For V > 0, we require that

F (Xl) > 0 , or xlf(Xl) > 0,

G (x2) > 0 , or X2g(X 2) > 0,

2a 3 F(Xl) + 2f(xl) x2 + 2G(x2) > 0,

and

(Xl, x 2) >I 0.

For V _ O, we require that

_a3 g(x2)/x2 - f'(xl) 3 >

2
 (Xl,x2) x 3 >I > o,

,

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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and

x 2

a3 x2 _o _ / (Xl'X2)-_xI x2,c[ x2 < •

As long as the closedness properties are satisfied, equations (49) to (55)

give the conditions required for asymptotic stability.

(55)

Second Formulation

Using the _ matrix in (27), we can write V =_x T _ _ as

V = kll Xl 2 + YI + 2 k12 XlX 2 + 2f I x2 +

+ 2k13 XlX 3 + k22 x22 + Y2 _+ 2 _k_3 m2x3 +

2
+ x3 + 2Y.

Partial differentiation of V gives the following components for _V:

_V

_Xl
= 2kllX I + dYl + 2 _Y + 2k12x2 + 2 dfl x 2 +

dxl _Xl dxl

+ 2k13 x 3,

_V dY2 dY___

_x 2 = 2k12 x I + 2f I + 2k22 x2 + dx2 + 2 dx2 +

+ 2k23 x3,

= 2k13 x I + 2k23 x2 + 2x 3.

If we now express the gradient of V in matrix form, we have

_V = B x =2

l

k,,* Yl + i___ %yXl ax--7
k12 + fl'

k12 + fl/xl
k22 + Y2' + i bY

2x2 x2 _Xl

k13 k23

k13

k23

i

xl

x2

x3

(56)

(57)

(58)

(59)

(6O)
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Combining equations (21), (26), and (60) gives

-k13 f/x I

-k23 flx I

T =2
m

- f/x I

kll + Y I + i _Y

2x I xI %x I

k12 + fl'

k13 - g/x 2

- k23 g/x 2

" kl3_/x ikl2 +
2

fi/x I" k13(a3 + /)

k22 + _ + i BY k23(a 3

2x 2 x2h -ax2

k23 - (a3 +/)

(61)

+/)

Applying conditions (22) to equation (61) allows us to determine the unknown

elements of the T2matrix. As in the first formulation, if we start with

KI3 = 0, / > 0, k23 = a3,

and then proceed in a similar fashion as before, we arrive at the same simplified

matrix as given in (45), Hence, V and V are the same as obtained by the first

formulation and the stability conditions are also the same. Actually, if we

consider (31) and (61) very little difference in the matrices is seen and

in fact, the two matrices give the same quadratic form_ = xT T x.

Mekel also shows in reference _ that the first and second formulations

lead to the same stability conditions for a fourth order system with three

nonlinearities. This work will not be repeated here, but it will occur in

the compendium of examples at the end of this section,

PURl 'S WORK _

Since this material is practically the same as given in the previous

discussions, we will only briefly outline the procedure.

nomous, nonlinear system given by

_ :A _,t) _,

where A is the same form as given in (15) but now a i = ai_ , t). The

equilibrium solution of (63) is taken as _ = _. The choice for a Liapunov

function is

Consider the nonauto-

(62)

(63)
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v =_XTS t)

where S is synmuetric and the elements are

X , (64)

Sii = fiir (xi) , i = 1,2,... ,n-l,
2

xi

Snn = i, (65)

Sij = fii (xi,t) , i # j;
xi

The time derivative of V is

= _T_A x + _XT SI x = _xT _T A + S_) x

where T --BTA- + S_ and _-_)T = --XTBT"

form:

i)j = 1,2,..., n .

= _XTT x,

The _B matrix in _)T is of the

(66)

B
m

f'll/xl

2f 12/x I

2f13/x I

2_in/x I

2 f'12

f'22/x 2

2f23/x 2

2_2n/x 2

2fl,n-i

!

2f2 ,n-i

2 f'in

2 f'2n

2 f'n-l,n

2

(67)

The arbitrary functions, fij' are chosen such that elements, Tij, of T satisfy

the conditions

Tii _ 0 and Tij + Tji = 0. (68)

Thus, T is negative semi-definite and the elements of S are known. The stability

conditions are then obtained from the requirement that S be positive definite

and from those conditions imposed by equation (68).
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The authors considered the following systems=

= (a),

(o) = _, (69)

(.q)= g ,

where C is any initial vector. The only equilibrium solution that the above

systems have is the null solution, _ = _. Also, the authors only considered

asymptotic stability in the large, (ASL); that is, _(t)-_O as t-_e_for any C.

The Liapunov functions used to analyze the nonlinear systems are generated

from common Liapunov functions, (CLF), which are derived for various types

of linear systems.

linear, non-feedback system and a linear, feedback system was obtained. The

results were then used to analyze a nonlinear, feedback system. Also, in

_, the CLF concept was generalized in order to be applicable to a nonlinear

system of the form__ = _A (_) x._ In _ , a CLF was defined for a linear,

variable parameter system of the form_ = A (KI, K2,... , Km) _, where

K I, K2 ..., Km are system parameters. Using these results, Liapunov functions

for certain nonlinear equations were generated.

All of these problems assume that _V = -XT Qx is known and we search for a

matrix P such that V = _ P x is positive definite. This is the approach of

the variable gradient method. The difference here being the technique used

to obtain P given the matrix _. We now present the various problems considered

by the authors,

Let's consider the feedback problem. The linear system with no feedback

is defined by

= A x , A E constant; (70)
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and the linear system with feedback is defined by

= Ax+dm

where c and d are constant vectors and

m=cTx .

Weassumethat both systems (70) and (71) are ASL. If a CLFfor both (70) and

(71) exist, then the form of V is given by

where P is a constant matrix.

V =_xTex ,

The time derivative of V corresponding to

(70) is

V =_x T IA__TP + P A_ x = - _XT QIx,_

where QI is positive definite. The time derivative of V corresponding
m

to (71) is

=-_x T Q2 x ,

P
x +_XT P IA_ x + d CT_ x

where

- Q2 = QI + P d CT + c dT P.

Thus, Q2 is positive definite if

m x T Pd _0 ,

where m = _T _" Now we introduce the following nonlinearity into the

feedback system:

o _< f(m) =u < 1 ,
m m

where u = f(m), the system equation becomes

=A x + d u .

As a candidate for the Liapunov function of (79), we consider the form given

in (73). The time derivative of V corresponding to (79) is given as

= _T (_ P + e A) x + 2u x e d.

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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This nonlinear system is ASL since from (77), (78) and (80) we have:

u _xT P d < m _XT P d _< O. (81)

Thus, if there exists a CLF for systems (70) and (71), then for a nonlinear

feedback system defined by (78) and (79) there exists a Liapunov function which

guarantees the ASL of the system. Namely, the same CLF as given for the linear

systems. With suitable restrictions on the vector function, f _), this

analysis can be used for stability studies of the system defined by

__ = f(_x) + d_ u. (82)

Also, in reference _ , the CLF concept was generalized such that the

nonlinear system

_x = A_.) _x (83)

could be analyzed. We begin this analysis by considering a linear system.

That is, for the linear system

= A x, A - constant, (84)

the necessary and sufficient condition for ASL is that for any positive definite

matrix Q there exists a positive definite matrix P such that

R = - C_AT P+_P A). (85)

The solution of (85), given Q and A, is

P =- Q _ , (86)

if Re (AK(A_) ) < 0 for all the distinct eigenvalues of A_, ,_K(A_). Wenow let

[_ be the set of all positive definite matrices_. Thecorrespondingset

[__ _ __u_ o__Q_an__s_.__m_o__.em_p_._o_se_ _] _._o_se_
under the transformation defined by

,,.. J
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or

At At
where A is defined by (84). If Re ( _ (A)) < 0 for all K, then the mapping

K

is unique.

Using the above results from linear systems, the sufficient conditions for

ASL of the nonlinear system (83) can be derived. We let xo be any fixed vector

in the whole x - space and define A (xo) to be Ao. the set fPo_ are the Pls

corresponding to Ao and defined by (88). The resulting conditions for ASL are:

(i) Re ( _ (Ao) ) < 0 for all xo and K.
K

(ii) The intersection of all the sets [_o_ is not empty.

Thus, from this nonempty intersection there exists a_ix P which gives a

Liapunov function for all Xo; namely

V = xT P _, and

 =xTC_A T to) _P+eA( o) ) x <0.

Therefore, _ = A _) _ is ASL and the Liapunov function used in the analysis

is a CLF of the system _ = A (Xo) _"

In reference _ , the authors considered the linear, varying parameter

system

=A (K) x , (89)

where K _ K _ K. A(K) is assumed to be linearly dependent upon the parameter K.

We choose the same form for V as in the previous cases x T P _, where

;(x) = - _xT _ _. The _ matrix satisfies equation (85). Since for any symmetric,

positive definite matrix _ there exists a unique solution of (85), then the above

V-function guarantees the asymptotic stability of (89) in a given range for the

parameter K. Since A depends on K, P is also dependent upon K through equation (85).
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Defining set _P_ as above, the CLF for (89) is defined as: "if there exists a

belonging to set _P_ such that Q* =- __AT P* + _P* A1 is positive definite

for all K in the range K_K_K: then V* = X P* X is a CLF over K _ K _< K .

By using this CLF, nonlinear systems defined by replacing K by K(x) can be studied.

To aid in the discussion, we consider the first and second order examples given

First Order System_ _

The system is described by the equation

= ax-Kx, (90)

where K is a system parameter. The Liapunov function of the form given by

(73) is

v .... 2 (ql

_hen

= 2px _x-KxJ : 2p (a-K) x2 = - qx 2. (92)

Equation (90) is ASL for K > a and for p > O. A CLF exists if the parameter K

is restricted by the inequalities

K >--K >a. (93)

If we choose

then V = _ - a)

p = K - a, (94)

2
x is a CLF for the system in (90) where the parameter K

satisfies (93).

2
v = (K-a)x ,

V is

If K is now replaced by a nonlinear function K(x), we can still use

as a CLF, provided_K = Min IKx (x)_a. The time derivative of this

= 2 (K-a) (a-K(x)) x2 < 0. (95)

Therefore the nonlinear equation

= ax - K(x) x, (96)



is ASL for K > a.

for a nonlinear system.

Second-Order Example _

Consider the second order example

Xl = x2

_2 = - K (Xl) x I

- 22 -

This example shows how a CLF for a linear system can be used

ax 2

where K(Xl) = b + f(xl). In terms of equation (83),

0 i

A =

-K(Xl) - a

where K is_treated as a parameter and the range of interest is K _I O.

candidate for V is given by V = _xT P _, then V = - _xT _ _, where

Q(K) =

If the

2 KPl 2 KP22 - Pll + aPl2

KP22 - Pll + aPl2 2 aP22 - 2 PI2

and Pij are the elements of P.

a P for _(0); namely, for

If there exists a CLF, then there corresponds

=

0
aPl2 - Pil

aPl2 - Pll 2 (aP22 - P12)

For _(0) to be positive semi-definite, we must select aPl2 = Pll

we have

Hence,

R(K) =
2 KPl 2 KP22

KP22 2 (aP22 - PI2)

• .°

(97)

(98)

(99)

(zoo)

(ioi)



- 23 -

For positive definiteness of _(K) it is necessary that

(i) P12 > 0, aP22 - PI2 > 0,

(ii) det Q(K) = q(K) > 0,

2 2

q(K) = - K P22 + 4KPI2 (aP22 - PI2 )" (lO2)

Since q(K) can be negative, as seen by (102)jthere exists a maximum value of K.

Thus, the maximum is

and a CLF exists for all K in the interval 0 _ K -_K. _Any matrix P which
\

satisfies aPl 2 = Pll and (102) is positive definite if K > 0 and a > 0.) If

we can choose a CLF for the range 0 _ K_,)_K, then the nonlinear system in (97)

(103)

can be proved to be ASL. This choice for V is

V =_x T a2

a

-- 2

where K = a ; by (103).

, (104)

The disadvantase of the above procedure is that for the linear problem corresponding

to (97), K(xl) = constant, there is an upper bound on K, given by (103). This can be

corrected if PII in P is written as Pll = c + vK, where c and v are constants. Thus

from Q(O) in (99) and the conditions (102), we have that c = aP]2, v = P22 and

q(K) > 0 for all K _ 0. Now, if we further choose < [P22 = 2]andlPl2 = a], then

P becomes

P

az + 2K

a 2

(105)

Therefore, _=f/(K) and _=P(K) are both positive definite for all K > O. Thus,
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for the linear system, K=constant in (97), the Liapunov function is

.

v(_x)=_xT

a2 a

a 2

= _xT P_o x + 2 K_ 2

x+2Kx 2
(106)

where Po is a constant matrix independent of K. Equation (106) is a modification

of the CLF in (104) because of the added term 2Kx_.

For nonlinear systems, an idea due to Cartwright is applied, in that the

term 2KX_ is replaced by

/o4 u K (u) d u (107)

Thus, for the nonlinear system in (97) the modified CLF is:

_o xl
V(x) = _xT Po x + 4 u K (u) d u

(108)

and

R (K)

where

(109)

Q

2aK (x,) 0

0 2a

This Liapunov function in (108) proves that (97) is ASL if KW,) >0-

Generalization

The above results are generalized to a system with several parameters

K • For the linear system, the form of the candidate for the
KI, K 2' ..... ' m

Liapunov function is

m 2

V_ = xT Po x + _ V i K i xi
i=l

(llO)
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where P__qois independent of the Ki's)and Vi's are constants (i = i, 2,...m, m ,< n).

For nonlinear systems, if Ki = Ki(xi) , the Liapunov function may be modified to

m /iV(x) = x Po x + 2 _, Vi Ki (u) udu. (iii)
i=l

o

The time derivative of V gives identical forms for _ in both (ii0) and (iii).

Since V_) in (iii) can be bounded in the following way

m 2
V(_x) >/ x Pox + _ Vi Ki* x i, (112)

i--i

where

Ki* MAX (x , Vi < 0

xi

M-IN (xi)_ , Vi > 0

xi

then V(x) in (iii) is positive (

all K i such that

//x//#

(113)

0) if V(_) in (ii0) is positive for

xi _£

(114)

Summary:

The results of the last few paragraphs may be summarized as follows:

Consider the differential equation x = A _ which depends linearly on the

parameters KI, K2 ..... , Km. If the solution of the system is stable for

__ _---Ki _%, then V = xT P (KI,...,K m) _ is a Liapunov function if P is the

solution of the equation

-AT (KI,...,Km) _ + _ A (KI,''',Km) = - _ (KI,'''Km) • (115)

If a_ > _Ican be selected such that P is independent of the Ki's, V(_) = _T _ _
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is a CLF in the range _i _ Ki _ Ki and, consequently, for the nonlinear system where

Ki = Ki (5) • _The trouble is that such CLF's are not easy to get.) If the nonlinear

system is such that Ki = Ki (xi) , then a Liapunov function of the form given in

(iii) can be obtained. This Liapunov function is greater than zero ( H _ _ # 0)

if MAX Ki(xi = Ki and MIN Ki(xi) = Ki as can be seen from (112) and
xi xi --)

(113). Thus, the method considered by the authors in the above discussion is one

in which the nonlinear problem is related to the corresponding linear problem for

which the stability conditions are known.
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COMPENDIUM OF EXAMPLES

The following set of examples were taken from the paper of Schultz and

Gibson, B]

(I) Second Order System

Xl -- x2 ,

"_'2 = - x2 - x 3i"

The gradient is assumed to be

o_ii

V_!v =

°<12

where the o<'s are constants or functions of x.

_'ll _21

x
°<12 2

The time derivative becomes

I l

,_ _ _ _ _x_)x_x_:- o<21X +_12-2) x2 + - - •

We now let (_ii -_21 - 2x2 ) = 0,°_12 = i andS21> 0. Thus,

+<0if I/ _xH#0.

=_21
2

+ 2 x I

V_XV--

And, the gradient becomes

2

The curl equations give the following relationships:

_V ==4
%Xl 21

_x2

_2v
_= i,

_2v --=<21.
_x2aXl

3

x I _-2x I + x 2 ,

x I + 2x2,
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Thus, we let _21 = i. The resulting V and V are:

7o +7f Xl 3V = V V • dx = (xI + 2x I ) dx I
o

(xI + 2x 2) dx 2,

2 ×b 2
xl/2 + 2 + XlX2 + x_ ,

--- 1,,2 r-Xl, 4 2 + 1,,2 I-xt + x2_-],
.J

-- (E:'T '_x---x_ -x_.

We can see that V is positive definite and V is negative definite. Also, as

Ixu _ _ ,

stable.

V --_ _ . Therefore the system is globally asyptotically

(2) Second Order System

This system is described by

Xl = x2

x2 = - x2 - flx2 - fl XlX2 - _Xlfl'

where fl = f(xl) , f_ = df(Xl)/dx I and _ _ constant. The gradient is

chosen to be

?V =

The time derivative of V becomes

= x_x2F_II - o_21-_21xlfl

+ _ [_ 23 __,_x_

__ _ _x_ _,

x2 I'
-x 2 - flx2 - ff XlX 2 -@x, fl

-_21fl - 2

+

fi] +



I

I

I

I

I

I

I (3)

I

I
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We now let the coefficient of XlX 2 be zero,_12 = 2, _ > 0

fl > 0 for all x I. The gradient becomes

_V

=<21( I + fl + Xlfl') + 2 _ fl 2

=<21 2

and

Applying the curl equations to ___V gives

= 2 ,

-_x2_x I

Then, if c_21 = 2 , the resulting V and V functions are

fx'Fx 7 r [xV = 2 i + Xlfl + x2 fl +_Xlfl dXl + 2 i + x dx2F,
t u -- ,Uo

x I

_o xl (Xl) dxl,
+ 2 _ xlf

dx I +

The V-function _ oo as _//_______ o_

system is globally asymptotically stable when

fl + xlf I' _ f(xl) + xlf'(xl) _ O,

fl _ f(xl) > 0,

_>0.

_ General Second Order Equation

This system is given by

+ a(x,x) x + b(x) x = O,

and the
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where a and b are such that a unique solution exist for given initial values and

the equilibrium solution is at x = x = 0 .

then the state-variable equations become

x2 b(Xl) Xl •

As in the previous cases, the gradient is chosen as

VV

= x2 ,

= _ a(x l,x 2) x2

°_12

C_21

21

The time derivative of V is

_12 2

= x t

If x I = x and x 2 = x ,

x2

= ii" a_21 - 2b XlX2 +412 x 2
2 2

- 2 ax 2 - b_21x I

Let =<ii = a_21 +

VV --

2b , 512 = 521 = 0

2b 0

0 2

and

_v = 2b(xl) Xl
%x I

2v = _2v = 0.
-_Xl_X2 -&x2_xl

Thus,
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Therefore the curl equations are satisfied and we have

V

fXl _O •
2 b(x I) XldX I + x2 2x 21x2,

O

f xl 22 b(x I) XldX I + x 2,
O

and

2
= - 2e(xi,x2)x 2 •

The system is globally asymptotically stable if

b(Xl) > 0 for all Xl,

_o xl b(xl ) x I dXl----_ =_ as x I _ c_ ,

a(x I x2) _ 0 for all x I and x2.

(4) Third Order System

The equations for the system are

Xl = x2

x2 = x3

_3 = - 3x3- 2x2 - 3x2 x2 " _ Xl3

After the usual choice for W , the time derivative V can be written as

dll

d12

d13

2
= (dll - d31- 3 d31 x I

+ (d13 + d22 - 3d32 - 4 - 6x_ )

+ (d21 - 3d31 - 2 @ x_ ) XlX 3 +

2 2
+ (d12 - 2d32 ) x 2 - 3d32 (XlX 2)

d21 d31.

d22 d32

d23 2

,-------_

x3 I

- @d32 x2 )Xl x2 +

x2 x3 +

2
(d23 -6) x3 +

-
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There are a large number of ways to constrain V. The authors initially set

32 = O. To eliminate nonnegative x_ - terms, d12 must be zero. Then,

all terms in V containing x2 are eliminated. This, together with the curl

equations give the following:

d21 = 0 , d23 = 0 , d12 ffiO,

dl3 6x_ d22°4 d31° 2x_

_ °_ + _ x_=_x_+_x_
The resulting __y_V becomes

5

6Xl

_V

3
_6Xl ) x 3+ 4x I +

4x 2

3
• 2x I + 2x 3

The corresponding V and V are

_ox _V = ___V• dx = x + x + 2x 2 + (2x3_ + x 2
2 _ i / x3 3 '

° <x_+ x_)_ + x_+ _x_

Thus, V is negative semi-definite for @ = 3 and V is positive for

Therefore, the system is globally asymptotically stable for _ = 3.

_x//

A better result is obtained if d23 is not zero. Applying a procedure

similar to the above, we have

6 d23 + d23 _ + 4 2

V = xI + 2 xI + 3 xi +

3 3

+ d23 Xl x2 + 2x I x 3 + 2d23 XlX2

+ (7/6 d23 + 2) x2 + d23x2x 3 + x 2

+ 2 d23
-T

XlX 3

.

+



I

(5)

I

I

and
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3

V = - 2 _ x 6 + (2 _ + 6- dz3) x I x3 +

2 2 4

- x3 (6 - d23) - "y d23 _ xI .

[

Let d23 = 2 ( _ -3). Then _ is negative semi-definite and V is positive

definite for all 0 < _ _ 3 The system_is _globally asymptotically stable

for this range of _ 's.

Another Third Order System

The describing equations of the system are

ffi x2,

x2 = x3,

=- - xix -

In this case the authors constrain V such that it is a function of x_

form of V which must be simplifie_ is

dli d21 d31

d12 d22 d32

d_3 d23 d33

x I

x2

x3

The

We start the simplification by letting d31 = O. From the curl equations

we find that

2
d23 = d32 = 6Xl ,

d31 = 12 XlX 2 .

Terms involving (xI x2),(x 2 x3),and (xI x3) can be eliminated if _iI = 6x_ , d22

and d21 = 2x_ + 18x_ x 2 . The term involving (x_) (x9) vanishes

3
if d12 = 36 x I x 2 . But, it can be shown that the curl equations

dictate that d12 must actually be d12 = 36x_ x_2 + 6x_ .

--4
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Th_s, V takes the form

V = iXl, x2, x3]

2 2
_- . 6xI x2 •

4
6Xl

3 2

36x I x2 + 6x I

12XlX 2

3 2

18xl x2 + 2xl 0

4
2

6Xl

Xl

x2 ,

x 3

Integrating V__VVgives

6 2 2V = xI + 2x x2 + 9x x_ + 2x + 6x I x2x 3 + x3 ,

3 2 6
= (x3 + 3x_ x2 )2 + 2 (x2 + Xl/2 ) + Xl /2"

Therefore, V is negative semi-definite, V is positive definite and V -_

as _ _ _ _ _ . The system is then globally "asymptotically stable•

The next set of examples were obtained from Schultz's paper_ reference [5] .

In this paper Schultz discusses the generalized Routh-Hurwitz conditions for

nonlinear systems of the form

x (n) + an (x, x (I) ,..., x (n-l)) x (n-l) + ... + al (x, x (I) ,..., x (n'l)) x=O,

where the equilibrium state is taken as x = x "l'f_

th
n-- order equation can be written in matrix form:

= x (n'l) = O. The

--A x ,

I

0

0

• T

i

0

0

l

-aI -a 2 . . (n_l)Fan
ai = ai (_), xL = x, ..., Xn = x
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The author considers 2nd and 3rd order cases; thus, the gradients of V used in

this paper take the forms

and

v_Xv =

VV =

dll (Xl)

d21(Xl)

d12 (xl)

d22 (x2)

dll (Xl) dl2(Xl, x2) d13 (Xl,X2)

d21(Xl, x2) d22(x 2) d23(Xl, x2)

d31(Xl, x2) d32(Xl,X 2) d33(x 3)

Xl

x2

x3

(6) General Second Order System

The system is described by

"x + A (x,x) x + Bl(x) B2(x ) x = O,

or

-B I B2 -A

x I

x 2

The time derivative of V becomes

= (dll - Ad21 - d22 BIB 2) XlX 2 +

2 2 2

-_ d12 x2 - d22 A x 2 -- BIB2d21 x I .

Since d12 and d21 are functions of xI, it is convenient to set them equal

to zero in the expression for V. Also the (xI x2) term is eliminated in V if

dll = d22 B!B2 • . To satisfy this equation and the form of _V

originally proposed, we choose dll = BI(_I) and d22 = i /B2(x2).



Thus,

where

and

_V

"_2v/_xl_x2
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BI 0

0 I/B2

Xl

x2

= _2V/_x2_xl = 0 • The resulting V and V are

Ix2
Xl

V = BI(XI) Xl dxl + X2d x2 ,

B2 (,x2)
o

A xl, ix2B2 (x2) 2 "

For global asymptotic stability of the given system the following conditions

i) the non-null solutions of V m O must not be solutions of x = A _;

2) v ---- _ as H_// _ _

3) A (Xl, x2) > 0 for all xI and x2 ,

B I (Xl) > 0 for all xI ,

B 2 (x2) > 0 for all x2 .

The conditions under (3) are the same as the Routh-Hurwitz conditions for a

linear system.

We now consider a third order, nonlinear system defined by

"_ + A_ + B_ + Cx = o,

or
m

Xl

x2

x3

0 i 0

0 0 i

-C -B -A

Xl I
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The expression for V is given by

= (dll - Bd31 -cd32 ) XlX 2 + (d13 + d22 - d32A - 2B) x2x 3 +

+ (_i - Ad31 " 2_ XlX 3 - d31 C_ Xl2 +

+ (d12 - Bd32 ) x22 -- (2A - d23 ) x2 ,

where d33 = 2. Below, we consider several special cases of this third

order example.

i (7) A & B constants; C = C(Xl) (In_werson)

2

The coefficients of XlX2, x2x 3 and x2 in V are set equal to zero:

dll - Bd31 - Cd32 = O,

d13 + d22 , d32A - 2B = O,

d12 - Bd32 = 0.

Let d12 , d21 ' d31 and d13 be constants. The curl equations will then

impose symmetry; namely, d12 = d21 and d31 = d13. For convenience, we

let d32 = d23 = A. Thus, we have

d32 = A, d31 = d13 = B, d12 = d21 = AB,

= = B2 + AC.
d Z_ A 2 + B , dll

The resulting V and V are

= - BC(xI) x_ - 2C(x I) XlX 3

BC 0

= . _xT 0 0

C 0 A

X ,
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_o x

= W • dx

= A x I _(Xl) dxl
+ + BXlX + Z x 2 +

(8)

2
+ B XlX 3 + Ax2x 3 + x 3 •

Thus, the conditions for global asymptotic stability are

A > 0

B > 0

C(Xl) > 0, for all x I,

AB - C (Xl) > 0, for all xI.

These conditions are analogous to the Routh-Hurwitz conditions for linear systems.

A, C constants; B = B(x 2)

This example is analyzed in the same way as example (7). Thus, we will only

give the V-function, V, and the stability requirements. V and V are

and

2 2V = ACx + 2CXlX 2 + A2 x2 + 2Ax2x 3 + x3 +

x2

+_f B(x2) x2dx 2.

o

The stability requirements are again the generalized Routh-Hurwitz conditions:

A >0,

B(x2) > 0, for all x2,

C > 0,

AB(x2) -- C > O, for all x2.
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B and C are constants; A = A(x2) (LaSalle)

This example is also Very similar to (7) and (8) and thus, only V, and V,

and the stability requirements are given. V and V are

and

V = C2/B x2 + 2CXlX 2 + Bx22

x 2

A(x2) x zdx2'
+ B

+ _BCI x2x 3 + x2 +

= 2x_/B (A(x2) B C)

Once again the stability conditions are the generalized Routh-Hurwitz conditions:

A(x 2) > 0 , for all x2,

B >0,

C > O,

A(x2) B - C > O, for all x2.

(i0) A = constant, B = B(x), C = C(x) (Barbashin)

One of the most general third order cases considered by Schultz was

Barbashin's problem:

_" + A_ + B(_)_ + C(x) x = 0.

By a procedure similar to example (7) we obtain the following V and V:

V = + 2_(Xl) XlX 2 +_2x +

+

'_'_oxl
2A _(Xl) x I dx I

2 f x2 B(x2) X2d x2

Jo

2
+ 2_2x 3 + x 3 ,



and

V = - 2x 2 lAB(x2) - C(Xl) _

The resulting stability conditions are

(1) A > 0,

B(x 2) > 0 , for all x 2,

C(xl) > 0 , for all Xl,

AB(x2) - C(Xl)

(2) dC(Xl)
Xl<. 0.

dx I

- 40 -

+ 2x2 L dxl J xl

> 0, for all x I and x2,

The condftions under (i) are the generalized Routh-Hurwitz conditions, and

(2) represents a saturating type of nonlinearity found in control systems.

(ii) Third Order System

The following equations describe a motor compensated with tachometer feedbacks:

x I = x2

x2 = x3

df (xl)l_3 = - _ g(xl ) Xl - N + dx I Jx 2 - Mx 3.

We assume a33 equals 2. Thus, V becomes

= XlX2(dll - dBiN - d31f _ - d32 _ gl ) +

+ x2x 3 (d13 + d22 - d32 M - 2N -2_ I' ) +

2

+ Xlx3(d21 d31 M - 2_gl) -- d31 @glXl +

2 2
+ x2 (d12 - d32 N - d32fl' ) + x 3 (d23 - 2M),

where

f(xl) = xlg(Xl).

This stability problem is more difficult than the previous problems. We

must consider the _'s to be made up of a constant term and a variable term.
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where fl' = df(xi)/dXl and gl = g(xl) • Wenow simplify V.

First, cancel-out the _-dependent term in the coefficient of XlX2 by a

proper choice of _Ii " This leads to the result that V is easily constrained in

terms of xI and x3; therefore, make the x2 terms vanish. Then, the curl equations

are applied. The results of these manipulations are

d23 = d32 = 2 (M -@) ,

d22 = d23 (M - N/M) +

d21 = d23 (N + gl) ,

d12 = d23 (N + fl' ) ,

I d31 = d23 N/M + 2gI ,

d13 = d23 N/M + 2f I' ,

2N ,

therefore, V becomes

dll = d31 (N + f l' ) + d23 _ gl ;

If the following substitutions are madein the

then V becomes

} - term

/23 = 2 (M-@) ,

xlg I = _ i ,

x 3 = _3,

= . - glXl •

Thus, V is negative semi-definite if we demand that

N > 0, M > 0 ,

+

o < @ M,

g(xl) > O, for all x I.
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Also, we assumethat V m0 has no non-null solutions. By line integration, V is

determined to be

jx IV = (2N + d23 _) g(_l)_l d_i + f'(_l)_l d_ +

o

d23N2x12-

- _ + d23 NXlX 2 + d23g(xl) XlX2+ _(Xl) Xl_ 2 +

+ _d23 M + 2N - x 2_2 + M23 xlx3
+

+

2
+ 2 g(xl) XlX 3 + d23 x2x 3 + x 3 •

The conclusions obtained from this very complicated V-function are summarized by

Schultz. The class of functions for which his conclusions are valid is defined

as the set of continuous nonlinear functions with positive slopes and which lie

in the first and third quadrants of the xlY - plane. Thus, V is shown to

be positive definite by Ingwerson's method. Therefore, our system is globally

asymptotically stable whenever V---_ _o as _ _ _____ _ •

From Geiss' Report, [7] , we consider Duffing's equation as analyzed by

the variable gradient method.

(12) Duffing's Equation

The defining equations are

xI = x21_

3
o

x2 = x I bx I , b > O.

The choice for _V

VV

is given by

all + dll(X I)

a21 + d21(x I)

a12 + dl2(Xl)

x2
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where all , a12 and a21 are constants.

becomes

FromV V and the defining equations,

= V_)T "x = (all + dll ) XlX 2 + (a12 + d12 ) x22 +

2
- -_(a°1+ d21 ) xI -- 2XlX 2 +

Thus, V is negative definite if all

and a12 < O.

b(a21÷d21)x_- 2bx_ x2
2

= 2 , dll = 2b xI , d12 = d21 = 0

The curl equation gives

_2v _2v
-_Xl_X2 _x2_xl = a12 = a21 < 0 .

Let a12 = a21 = - _ , where _> 0

V and Vbecome

2 2V = + x I -- _XlX 2 + x2

and

V =- - x I

V is positive definite if 0 <_ _< 2

Therefore,

 xtJ.
• V is indefinite unless _ = 0.

When _= 0 , V is positive definite and V is identically zero, In fact,

I since V =- O, V = constant is a trajectory of the system. The system is stable in

the neighborhood of the null solUtion, but not asymptotically stable.

We now consider some examples analyzed by Puri's "shorthand" method for

the variable _radient technique. One example will be a generalization of Barbashin's

problem, [8] . The other examples will be the same ones as considered by Schultz

and Gibson in [i] .

(13) Second Order System

The system is described by

_1 = x2:,
° 3
x 2 = _ x I - x2 ,



I
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or

0 I

2
-x I -i

xli
x2

We assume a symmetric form for the square matrlx in V V :

_V

GII GI2

GI2 i

The time derivative of V is

= _(___)T½.....= XT(GT A) x = XTT x ,

2

- Gl2x I GII - GI2

= x T x
2

- xI GI2 - i

G x o

2
Let GI2 = 0 and GII = x I .

_V =

2 2
-Gl2x I GII - GI2 - xI

0

Then V= -- x22.

2
x I 0

0 i

GI2 - i

The gradient is

X •
m

3

Xl

x2

where _2V = _2V

-_Xl_X2 _x2-_xI

= 0 By line integration

4 2

V = xl/4 + x 2//2

Thus, V is positive definite_ V is negative semi-definite; V as

oo and V _ 0 is satisfied only by the null solution.

Therefore, the system is globally asymptotically stable.
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(14) A General Second Order System

The system is described by

Xl = x2,

x2 - - b (Xl) xI - a(xl,x2) x2,

or

The choice for WV

0 i

X.

-b -a

is the same as in the previous example; thus V becomes

= [Xl, x2] GII

GI2

= xT

= x T

GI2 0

1 -b

-bGl2 [ GII - aGl2

- b GI2 - a

-b GI2 GII - aGl2

0 GI2 - a

i

_a

-b

X ,

Let GI2 = 0 and GII = b. Therefore, _V becomes:

where _V/_x I =b(xl) El

is easily checked:

v_v --
0

I

and _V/_x 2 = x 2 . The curl equation

_2V _2V

-_Xl-_X2 = -_x2_xl
-- 0.

By line integration of NN we get

V = xlb(Xl) dx I

o

2

+ x 2/21



2
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• The system is globally asymptotically stable if

b (Xl) > 0 for all Xl,

_oxl b(Xl)
xI dxl------_ as x1 _ o_

a(Xl, x2) > 0 for all x I and x2.

(15) A General Third Order System

This system comes from Puri's work in reference E8]

'2" + f3(_) + f2(_) + fl(x) = 0.

The matrix formulation, where x I = x, x2 = x and x3 =_',

• u

E1 1

• u

x9 1
•- u

• !

xq I
t

0 i 0

0 0 i

-fl/x 1 "f2/x2 -f3/x3

The equilibrium solution is assumed to occur at _ = _.

• The equation is

is given by

Xl ]

x2 I •

x3 ]

The form of V V is

assumed to be

_V

GII GI2 GI3

GI2 G22 G23

GI3 G23 i

X = G x

Since in G there exists five unknown functions of _, we need five equations

! o

involving the Gij s. These relationships are obtained from V as follows.

= = _XTGTA x,

=_xT

-GI3 fl/xl GII - GI3 f2/x2 GI2 - GI3 f3/x3

-G23 fl/xl GI2 - G23 f2/x2 G22 - G23 f3/x3

-fl/xl GI3 - f2/x2 G23 - f3/x3

X
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-GI3 fl/xl GII - GI3 f2/x2 - G23 fl/xl GI2 - GI3 f3/x3 - fl/xl

0 GI2 - G23 f2/x2 G22 - G23 f3/x3 + GI3 - f2/x2

0 0 G23 - f3/x3

1

1

1

I

I

I

I

I

= X

Let all the elements in the above triangular matrix be zero except the second

row, second column element. Thus, we get the following results:

Since _V

GI3 = 0 , GI2 = fl(_i)/ xI ,

G23 = f3(x3) / x 3 , G!I = fl(Xl) f3(x3 ) /XlX3,

G22 = f2(x2)/ x2 + 3(x3) / x3

= G x, we have

-_Xl = flf_x3 + flX_Xl,

o__v 2
_x2 = fl + f2 + x2f 3 /x3 + f3x3/x3 ,

_gx 3 = x2f3/x 3 + X3o

We now see one of the disadvantages of assuming a symmetric G matrix when we

attempt to check the curl equations.

_2 v _2 v

_Xl_X 2 ---- _x-_l

The curl equations produce the following:

gives fl/xl = dfl ,

dx I

_2V __ _ gives Ffl d (f3/x3)_

_-_X l_-_x3 "_x3"_Xl L dx3 J = O,

_2V _2V gives d (f3/x3) 2 d (f3/x3 x3 )
+

_x2_x 3 _x3_x 2 dx3 dx 3

One way in which these curl equations could be satisfied is to replace f3/x3

by a constant; namely, _= Lim (f3 /x3)

x3--_ 0

dfl/dxl . Our new G is no longer symmetric, but is

, and to let GI2 equal

G

_fl/xl fl '

2
fl/xl o< + f2/x2

0

0

i

f3/x 3 .
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resulting in the following expressions for the componentsof VV ,

and V and V become

_Xl = fl + fl' x ,

-_x2 = i + f2 + o< x2 + olx ,

V
r(Xl,O,O)_V

=_(o,o,o) L_l]
dXl +_(Xl'x2'O)

J
(x1,0,0) _(xl,x2,0)

_o Xl
= ¢_ fl(Xl ) dx I

x2 =_2

o

2

+ _x2x3 + x3/2 '

= i (_x 2 + x3) z + fl(xO x2 + o_ fl(Xl) dx I

2 o

x2

+ j f2(x2) dx2,

o

and

= (W)T"_x

=- f2/x 2 - fl x2

Mf2/x2

+ 2

fl'

--_ (f3/x 3 - _)
2

I_ (f3/x3 -o_)]

(f3/x3_ - _)2

f3/x - o_
3

 3Jx3-  x!l

Therefore, a set of sufficient conditions for a global asymptotically stable

system is as follows:

> O, fl(Xl) xI > O, f (x2) x 2 > 0 ,

d fl (xl)

o< f2(x_)/x_ -- dx I > 0 ,
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2

[°(f2(x2)/x2 dxI J L x3 "

and

_o xl _o x21/2 (Olx2 + x3)2 + o< fl(Xl) dx I + f2(x2)

dx2 >/ [fl(Xl) x21

_i,_2,f3aresucht_tv__o_II_lJ__"
I

i Barabashln's problem is a special case of the above if we let f3/x3 =

i in the equation describing the system° The corresponding V and V are

[ i 2= -- c_ f2/x2 - fl' X 3 ,

_0 xlV = i12 (c<x2 + x3)2 + fl(Xl) x2 + _ fl(Xl)dXl

+i X2 f2(x2) dx2•

+
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(16)

The stability requirements reduce to

o< > O, fl(Xl) xI > 0

_ f2(x2)/x 2 -

x )21/2 (_x2 + 3

, f2(x2) x2 > O,

fl'(Xl) >i 0,

x 1

+=< fl(Xl) dx I +

Also_ the third order linear system is a special case of the above problem.

Let f3 = a3 x3 = _ x3 j f2 = a2 x2 and fl = a I x I , where the a's are all

constants. Thus, V and V are

V = 1/2 (a3x 2 + x3_ + alXlX 2 + Xl x2 .

The stability conditions are

a I > 0 , a2 > 0, a3 > O,

a2a 3 - aI > 0,

which correspond to the Routh-Hurwitz conditions.

The next set of examples comes from Ku and Puri's work which is reported in

references[9] and _ •

Simanov' s Third-Order System

The nonlinear differential equation is

"x" + f (x, x) _" + b x + cx = O,

where b and c are constants. For the state variables xI = x, x 2 = x and

x 3 = _ , we have

_ =A _) x =

0

0

-c

i 0

0 i

-b -f(xl,x 2)

X •
m



!

I - 51 -

The fom of the S matrix for this system with one nonlinearity is

I KIII KI2 1 KI3

where the _j's are constants. The candidate for V is V = _ S x. The

gradient of V becomes

KII + i _ KI2

_ = B x = K12 K22 + 1 _
_-_-_ K23

KI3 K23 K33

Thus, the time derivative of V yields

= XTBT A x = _XT T x =

i BY bKl3

-CKI3 KII + 2Xl _i--

.f

KI2 - fKl3

Xo

= _T -C_3 KI2 - b_3

-CK33 KI3 - bK33

For TI3 + T31 = 0, KI3 --__0 and KI2 = cK33.

to be zero we require that KI3 = 0 and KII

_2 + i BY - f K23

2x 2 _x 2

K23 - fK33

X.

For the constant parts of TI2 + T21

= cK23 . Let T22be zero; thus

bK23 = KI2. Let the constant parts of T23 + T32 be zero; therefore KI3 = 0 and

K22 = bK33. Choose K33 to be b2. The remaining constants are K22 = b 3, K23 = bc,

KI2 = b2c, KII = bc 2. Let the variable parts in T23 be zero, thus

_Y/_x2 = 2bc f(x I x2) x2

fY = 2bc f(xl,x2) x2dx 2.
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= 2 bc
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x2dx2•

o
The resulting matrix _ in V becomes

0

T = 0
M

The final expression for _ is

bC/xl J o x x%dx£

0 0

0

2
-b (f - C/b)

= - b2 (Xl,X2) - c/b x 3 + bcx 2

Substituting the _j's and Y into S we get our V - function:

2V = b (cx I + bx2) 2 + (cx 2 + bx3) 2 + J (xl,x2),

where

J(xl,x2) = y (Xl,X 2) - c2x_.

The system is asymptotically stability if we require

_o x2 22b f(xl,x2) X2dX 2 > cx 2 , b > 0

f(xl,x2) > c/b ,

x 2

b f (Xl,X2) - x3 > cx2 _x

J (Xl,X2)-------_ oo as II_ I --____ _ ,

and V _-- 0 only for the null solution.
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(17) Cartwri_ht's Fourth OrderExample [9]

or

The system is described by

• -oo o,- o.

x + a4x + a3x + a4 _ + f(x) = 0 ,

0 i 0 0

0 0 i 0

0 0 0 i

-f(xl)// -a2 -a 3 -a4
/

/ Xl

X ,
m

The S matrix which the authors choose is

KII + xl 2 KI2 +I 2Xl _

S __.
m

fl2(Xl)

KI2 + 2x I

f1 (xO
KI3 + 2Xl

KI4

I

i
K22 - ._ f'(xl)

K23

K24

KI3 + Xl j

K23

K33

K34

KI4

K24

K34

K44

vswhere I_._ are constants, The T matrix is formed as before and the results
_j

are

KII = 0, K22 = 1/2 (A3a 3 + a2a4), _3 = a3 - a2/a4,

K33 = 1/2 (a_ + a2/a 4) , K44 = 1/2 ,

KI2 = 0, KI3 ' KI4 = 0, K24 = 1/2 /k 3,

K23 = 1/2 a3a 4 , K34 = 1/2 a4

dY

f12 = a4f, f13 = f , d-_l = _3f "

Thus, V becomes

2 a2 a4 ))2
2V = (X4 + a4x 3 + _3x2) +_4 <x3 + a4x2 + _2 f(xl

+

x I

+ a--q
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The time derivative of V is

E ]2=- (a3 - a2/a 4) a2 - a4f' + fIQ2 x2 x2 •

We have an asymptotically stable system if we require the following:

a 2 > 0, a3 > 0, a4 > 0, A 3 > O,

[_3 a2 - a4f' + _f';/2) _2] > 0,

a2/a4A 3 - f' > 0,

2A
f(x I) dx I - a4 f2(xl) > 0 ,

/a2

and (f) is such that V _ o_

(18) Ku's Fourth Order Example _

as x//______ _ •

The nonlinear differential equation is given by

'x + a x + f (x,x) "x + cx + dx = O,

or in state variable notation:

m

0

0

i 0

0 i

0 0

-c

i

-d -f(x I ,x2) -a

x = A x ,

eo

where x I = x, x2 = x, x3 = x , x 4 = "x" . The S matrix in V =_x T S _ is

chosen such that the B matrix in__V

B

KIt + 1
2x I _x I

KI2

= B x has the following form:

KI2 KI3 + x3 "_'
2

K23 + x3 "_

2 -_x2

K22 + i BY

2x2 _x2

KI3 K23 K33 + _

KI4 K24 K34

KI4

K24

K34

K44
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where X = X (Xl,X2) , _ = _ (Xl,X2)

and the Kij's are constants. The time derivative of V is given by

=--XT _T A x =_xT _2 _, where the elements of _2 are chosen such that _2 is

negative semi-definite. The resulting relationships for the Kij's and the
unknownfunctions are:

K44 = i, K34 = a, KI2 = ad, KI4 = 0,

KI3 = d, K24 = ad/c, KII = ad2/c,

K23 = c + a2d/c, K22 = ac - d,

K33 = a2 - ad/c, / = f(xl, x2) ,

%Y
_x--_ = 2 ad/c f (xl,x2) x2,

.x2
I'

Y = 2 ad/c J
-o

A simplified equivalent T matrix is

f (Xl,X 2) X2dX2.

0

0

T

_o x2 x2 dx 2

ad
cxl -_x 2 0

0 0

I _ x3 _f a2d

0 -_ " _x I -af + c + -_--I-2 _x 2

0 0 0

and the corresponding time derivative is

= x T T x = -< •- c - a2dlc - 112 i x2 + _f x x 2

0

0

x3 _f

0

0

+ ad/c x2 x 2 dx 2-

+
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The V-function is given as

2V = c/a c xI + ax2 + x3

+ f - cla - c x 3 +

+ c x2 + ax 3 + x 4 +

a2d/ x .

Asymptotic stability of the system will be guaranteed if

af - c - a2d/c - 1/21_fxl}x2 + x2] _ >j" E _0 ,

,d,, fo<i x2dx2,
f = cla = adlc > O,

Y - dlc (c + a2dlc) x _ > 0

and f is such that V --m o_ as _II _ =_"

The next several examples are from the Ph.D. thesis of Mekel,

There are second order, third order and fourth order examples. Some of the

systems are the same as considered before but Mekel's Liapunov functions

and stability conditions are different. Because the method of Ku, Puri and

Mekel has been discussed in detail in the text of this section as well as

in the examples, only the salient points of the following examples will

be given.

(19) _ + a2 x + f(x) = 0, a2 _ constant

The matrix form of the equation is

0 i

0

x = -f(xl) -a 2 x , x =

Xl

Xl x = x2 .
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The Liapunov function and the corresponding time derivative are

V = xT S x = xT 2F(Xl)/x12 1|
0

and

V = _XT T x = _xT

where F (Xl) =

stability are

xI

o

f (x I) dx I •

0 i

0 0

0 -a2

X

X

The resulting conditions for asymptotic

a2 > 0, x I f(xl) > 0 if

F(xl)_ _o if IXll

,Q

x + g(x) x + aI x = 0 ,

The matrix form of the equation is

0

X __

-a I -g(x I)

The Liapunov function and the time derivative are

al

and

v =_XT S x =_xT

0

0

0

V=_XT T x = 2 _xT

a I _ constant

xI _ O,

; x = Xl, _ = x2.

0

x ,

I

0

x ,

-g(x I)
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The resulting conditions for asymptotic stability are aI > 0 and g(xI) > 0

for all xI.

OO

(21) x + _(x) x + f(x) = 0

The matrix equation is

0

X = ; x = x I , x = x2 •

-f(x I) -g(xl)

xI

The Liapunov function and the time derivative are

v --_s x =_r x_

0

0

0
V=_XT T x = 2_xT

0

x ,

i

0

x ,

-g(x I)

_o xlwhere F(Xl) = f(xl) dx I . The resulting conditions for asymptotic

stability are

g(xl) > 0 ,

xlf(Xl)> 0, xI _ o ,

F(Xl)----+ _ as IXll----._.

(22) °x"+ a4 "x" + / (x,x) "x + g(x) + f(x) = 0

This fourth order system can be expressed in matrix form as

0 I 0 0

0 0 i 0

0 0 0 i

-f (Xl)/Xl -g (x2)/x 2 - _(x I ,x2) -a4

X ---- X
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o oo8

where x I = x, x 2 = x, x 3 = _, x 4 = x and a 4 is a constant. In the following

S matrix the Kij's are constants, YI = YI (Xl)' Y2 = Y2

f2 = f2(x2 ), gl = gl(x2 ), _i = _l(Xl_2) and Y = Y(Xl,X2):

(x2)' fl = fl(Xl )'

S

YI + Y
2

KII + xl KI2 + fi_xl

KI4

The time derivative
_ _X T

functions in S

Y2 + Y

+ z
x2

KI3 + f2/x I KI4

KI2 + fl/x I K22 K23 + _i/x2 K24

KI3 + f2/x I K23 + gl/x 2 K33 +_i K34

K24 K34 i

x is now formed and the unknown constants and

The

T

are determined by making T negative semi-definite.

resulting T is

T
m

0

0

0

0

0

l 0 o
I

and the corresponding S matrix becomes

S

1 2 2a 2 F(xl) + Y
Xl _

a4f(xl)/Xl

0

f(xl)/X I 0

1 ,-- 3

a4 f(xl)/Xl _z!_ 2a4G(x2) + Y a_ + g(x2)/x 2

f(xl)/X I a_ + g(xm)/x 2

2

O a 4 a4

0

O

0

2

a 4

a4

!
where f

f /(Xl)

i /oX2= df(xl) , g = dg(x2) , = _ (Xl'X2)' Y = _ (Xl' x 2) --

d-_l dx2

fo= f g(x2) dx 2 and F(xI) = Xl f(xl) dx Ix2 dx2, G(x2)

%
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!
The corresponding Liapunov function and the time derivative are

i

V = 2a24 F(x I) + 2 a4 f(x I) x2 + 2 f(x I) x3 + 2a4 G(x2) + I

2 3 2

+ 2x 3 g(x2) + / (Xl,X2) x3 + 2a 4 xmx3 + 2a4 x2x4 +

x2

+ 2a4x3x 4 + 2 a4 /(Xl,X 2) - f (xI) x2dx 2,

o Iand

= - 2a 4 4g(x2)/x2 -- f (x I) x 2 +

[a ' "- 2 4 /(XlX2) - g (x2) - 1/2 / (Xl,X2) - a4 x3 +

Thus, the conditions which give asymptotic stability are
"l

a4 > 0, g(x2)/x 2 > 0, [a4g(x2)/x 2 - fl(Xl) j

I

L

x2 /oX2[ ]a 2 "_x--_ - fql (Xl) x2dx 2
0

x I f(xl) > 0, x2g(x2) > 0, _(Xl,X2) > 0,

[a4 F(Xl ) + x2f(xl) + G(x2) ] > 0,

_(Xl ) + g(x2) ] x 3 _ O,

> 0,

> O,

and

a2 /(Xl,X2) - f'(xl) > 0.
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(23) ..... _ + f(x) = 0x + a3x + a2

The matrix form of the equation is

0 i

= o o
i

-f(x I) -a 2

xI

The corresponding Liapunov function is

2a 3 F(x I)

2
xl

V = _xT S x = xT f(xl) /
xI

0

0

i

-a3

o-

x, x=x I _ = x =, 2"_,x

f (Xl)/x I

2
a2 + a3 a3

i

or

xI

V = 2a 3 f f(xl) dx I + 2f(xl) x2

o

2 2
+ a2 x 2 + (a3x 2 + x3) ,

and

V=_XTT x =2x T

0 0

0

0

- _a2a 3 - f' (Xl)

or

, where F(Xl) =

The equilibrium solution is asymptotically stable if

a2 > 0, a3 > 0, Ea2a3- f'(xl)_ > O,

_ /ox__x_ + _x_] >o3

0

0 x,

0

f(Xl)dXl.

x3.

X_
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and V satisfies the proper closedness properties.

(24) "_°____+a3_ + h(x)________+ alx_________=0__j__,

The corresponding matrix equation is

10 i i0 i

/-a_ / -_(x_>I -a_
The corresponding Liapunov function is I

1 ala3 1 al II

I,, o / _ _
or

2 rh al a ] x2 x3 )2,
V=a I

and I 0 I 0 0

_ = 2 _T I 0 I -_3h(Xl) - al - i/2 h'(Xl) x2] 0 x, I

' Io I 0 o" I

I

• I 2

V =- 2 La3 h(Xl) - aI -i/2 h (Xl)x2_ x2 . 1

The equilibrium solution is asymptotically stable if

a I > 0, a3 _ 0, a3 h(x ) - a I - 1/2 x_h'(Xl) > 0,

and V satisfies the proper closedness properties.

(25) _" + a;_ + g(x) + alx = 0

The matrix form of the equation is

=

0

0

-a I

0

i

=g (x2)/x 2 =a 3

_ x I = x_ x2 = x, x3 = °x.



The corresponding Liapunov function is

ala 3

V= TS x al

0

or
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a I 0

2 G(x2) 2

._ + a 3 a3

a 3 i

X_

where

V = aI (va 3- xI + x2/ _)

2 2

+ (a3x 2 +x 3)

X

+ 2 j ix 2

o

a 3 x2 dx 2

G(x2) = x2 g(x2) dx 2 ,

d
o

and

or

=2

0 0

0 - _a3g (x2)/x2

0

X_

_ =- 2 Ea3g(x2)/x2- all x22 .

The conditions for asymptotic stability are

1 a I > 0, Ea3g(x2)/x2- al_ > 0, a3

_(26)

and the closedness of V.

..... (x)x + a3x + g + f(x) = 0

0

0 0 i

"f (Xl)/Xl -g(x2)/x 2 -a 3

The matrix form of the equation is

I

0 i

)

1

0_

_, xI = x, x 2 = _, x3 =_
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The corresponding Liapunov function is
2

2a3 F(Xl)/xl

V=_xTS x = _xT
f (Xl)/X I

f (Xl)/Xl

2G(x2)/X22 + a 23

0 a 3 i

a3 X_

or

iV = 2a 3 f(Xl)dX I

where

x 2

+ 2f(xl) x 2 + 2 / g(x2) dx 2 +

O

(a3x2 +
2

x3) ,

and

xI

F(Xl) = /

O

x2

f(x I) dx I , G(x I) = /

O

g(x 2) dx 2,

V =XTT x = 2 _xT

0

- [a3g(x2)/x 2 - f' (Xl)]

0

0

0

0

X_

or

The stability conditions are

a3 _ 0, [aBg(xm)/X 2 -f' (Xl) ]

xI

O

> 0,

x2

f(x I) dx I + f(x I) x2 + /

O

g (x2) dx 2
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i(27) ..... x)x + a3x + g (x, + f(x) = 0.

The mat_ix form of the equation is

0 i

= o o

- f(xl) -g(xl,x2)
Xl x2

The corresponding Liapunov function is

2a 3 F(xl)/x 21

V=_XTS x = _xT

- 65 -

0

-a 3

x, x I = x, x2

f(xl)/x I

f(xl)/xl 2G(xl,X2_x_ + a23

0 a3

or

= x)x 3

0

a3

oo

---- X®

X_

where

and

or

x I

V = 2a 3 j f(xl) dx I + 2

o

x2

/
o

g(xl,x 2) dx 2 + 2 f(xl) x2 + (a3x 2

F(xi) =

x

/i
O

f(x I) dXl, G(Xl,X 2) =

x

2 g (XlX2) dx2

o

V=2_x T

0

0

l-

a3 g(xl _x2)

- x 2 - f' (Xl) + x2

x2

_g(xl x 2) --

"_x I dx 2 0

0

" r g(xl_x2) -- f'(xl)

V = - 2 La3 x2

+
x2

l/x2 I _g(xl'x2)-_Xl

o
dx Z x2

X_

+ x3 )2 ,
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The stability conditions are

a3 > O, _3F(Xl) + f(xl)x 2 + G(xI,x 2 )] > 0,

la g(xl'x2)3 x2

x2

Ifo g xlx2 j" f'(xl) + _2 "-_xI dx 2 > O.

"x" + _(x,x) _' + a2 _ + f(x) = O.

The matrix form is given by

0 i 0

0 0 i

-f(xl)/x I -a2 -_(Xl x2)

_, x I = x,x 2 = _,x 3

The corresponding Liapunov function is

v=Ws x =

2a3F + a3 Y

xl2

f(xl)/x I

f(xl)/x I

Y/ 2a2 + a3 K2

0

a3

0 a3 1

or

x 1

V= 2a3 f

o

2

f(xl) dx I + 2 f(xl) x 2 + a2 x 2 +

x2

+ 2a3 fo [_(Xl'X2)- a3] x2dx2

2
+ (a3x 2 + x3) ,

where

Xl if2

F = f f(xl)dXl' Y = Jo
o

_(Xl,X 2) x2dx 2

=x.

X_
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and

• 2

W =-2 Ea3a2- f'(xl) _ x2 -2 _(Xl,X2) - a3 2x3 +

x 2

+__x_JoL _x_Jx__x_.
The stability conditions are

f x1

a3 > 0, a2 > 0, a3 /o f(xl) dxl + f(xl) x2 > O,

E,_-_,(x4 > 0,E_Xl,x_)-_3> 0,
and

i X=]oL _ - j x=_x=< o.

i (29) "x" + _ (x,x) x" + g(_) + alx = O.

The matrix form is given by

I iol 1 hol
-_- : I 0 I 0 I 1 I X, where /_ =_(Xl.Xg)

I 11 h l--al -g(x2)/x 2 - p

The corresponding Liapunov function is

ala 3 + a3 Y/XI al 0

2G(x2) ,+ a3Y

V = X.T S__ x = __xT al I X:2Z a3 __X,

I o .1 a3 1

I

1
I

I
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or

2

V = al( /_3Xl + x# _) + (a3x 2 + x3)

2
+ 2

]
+ 2 a3 o _ (xl 'x2) - a3 x2dx2'

where

x2 x2

G(x2) = / g(x2) dx2 , Y = / _ (Xl,X2)

and

V = - 2 [a3 g(x2)/x 2 -a I ] x _ - 2 [_(Xl,X 2)

+ a3a 2 "_x I x2dx2.
o

The stability conditions are

a3 > 0 , Ig(x2)/x2 - al/al >0,

x27 ]_o _(Xl _x2)x2 -_x I x2 dx2

°x" + _L(x,_)"x" + _(_) + f(x) = O.

x2dx 2 ,

The matrix form is given by

x

Xl,X2) - a3_ > O,

< O, a I > O.

(x2) - a_31] x2dx2
x 2

0 i 0

0 0 i

-f(xl)/x I -g(x?2)/x 2 -

- a3} x2 +

x, where/=/(x l,x 2).
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The corresponding Liapunov function is

V = X S X = X
T --T

2a 3 F(x I) + a3Y

2
xl

f(xl)/x I

f(xl)/x I

2G(x 2) + a3Y

_: 0 a3 i

or

a3
X_

x3 2 EV = (a3x 2 + + i/a 2 2x2 + f(x I + 2

x 2

/ -
x 2

+ 2a3 _o [_(Xl,X2) - a3 + a2 2a2a 3 F(x I) - f (x I ,

where

+

/xl /2
F(Xl) = f(xl) dx I , G(x 2) = g(x2) dx2,

o o

Y(Xl,X2) = ")_(Xl,X2) x2dx 2 ,

o

and

V = - 2 Ea3 g(x2)/x2- f'(xl)l ,

+ 2a3x 2 "_x 1 x2dx2.

The stability conditions are

a2 > 0, a3 > 0,

2 1x 2 -- 2 (xl,x2) -- a3 x2 +

_3g(x2)/x 2 -- f'(xl) _ > 0,

_(Xl,X 2) - a3 > 0, x 2 x2 dx 2 W. 0,
o
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Ig(--x2) 2j _a2a3F(Xl) - 0.x2 - a > 0 , f2(xl) _ >

(31) "'x" + a4x'+ a3_ + a2x + f(x) = 0.

The matrix form of the equation is

0 i 0 0

0 0 i 0

0 0 0 i

f(x I) -a 2 -a 3

Xl

-a4

x, x = x,xp_ = x, x = x_-- I 3

x+

The corresponding Liapunov function is

V=XTS x =

2 _ F(Xl)

xl 2

a4f(xl)/X 1

f(xl)/xI

a4 f (Xl)/X I

a2a 4 + a3A-f'(x I)

a3a 4

f(xl)/xI

a3a 4

a_ + a2/a4

0 Z_ a4

0

A

a4

X_

where

or

l

= (a3 -a21a4 )' F(Xl) = _o f(xl) dxl' f'(xl) =

df(x I)

dx I

2

V = _(x4 + a4x 3 +_x 2)_

a2

+ a4 (x3 + a4x 2 + a4/a 2 f(x I +

+ lla 4 (a2 A - a4f'(xl) x_ + lla2 (2a 2 _ F(Xl) -- a4f2(xl_ ,



and

V = - 2 a 2 _ - a 4 f' (x 1) + 1/2 f" (xl) x 2 x 2 .

The stability conditions are

and

_a2 Z_ - f'(x I) + 1/2 f" (Xl) x21 > 0.a 4

(32) "x'+ a4x" + aBE" + g(_) + alx = 0.

The matrix form of the equation is

m

0

0

0

=a I

I 0 0

0 i 0

0 0 i

-g (x2)/x 2 -a3 -a4

x, x I = x,x 2 = x, x3 = x, x4 - x.

The corresponding Liapunov function is

v=_x T

al

ala 4

aI

ala 4 al

2a4G

a3 A - a I + _ a4 Z_ + g(x2)/x 2
xZ

a4A + g(x2)/x2 a2 + a2/a 4

a4

0

x ,

a4

i

or

V = (Ax 2 + a4x 3 + x4 )2 + a2/a 4 (x 3 + a4x 2 + a2 / +

+ 2 _g(x2) x3 - a2x2x3_ + I/a4 Ea2 _ - ala4] _ x2 + ala___4x12_ +
a 2

x 2

+ 2a4 _o' Eg(x2)/x2 - a2] x2dx2,
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(33)

where

and

fx
A = a3 - a2/a 4 , G(X2 ) = g(x2) dx 2

O

_g(x2)/x A- a4al] 2 Ia )]= - 2 2 X2 -- 2 - g'(x2
2

x 3 •

The stability conditions are

aI > 0, a2 > 0, a4 > 0, A > 0,

[a2 d - aI a4_ > 0, g(x2) x3

[g(x2)/ _ -ala4] > 0 ,
x 2

and

a2 - g'(x2) > 0.

-a2x2x 3 > 0,

(x2)/x 2

.......x a4x _ x) "'x+ + (x, + a2x + alx = 0.

The matrix form of the equation is

0 i 0 0

0 0 I 0

=
-- 0 0 0 i

-a I -a2 - _ -a 4

The corresponding Liapunov function is

2
_la4

a2 a2 x _

V=ETS x =El
a4al

al

0

a4a I

ala4Y

a4a2 - al +-'----_

a2 x_2

_+ a2
a2

a4al

a2

x, where _ = _ (Xl, x2).

a I

2

a4 al a2
+

a2

2

a4 - ala4 +6
!a2

a4

0

a4a I

a2

a4

I



I
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I
V = 4 + a4x3 + a2 ] x 22 + _ 3 + a4x2 + a2 _J +

+ a2a4 2a4 (Xl,X2) - a 2 - ala4 x3 +

" 2 _2

1 + _-_2 2a4 _ (Xl,X2) - a 2 - ala 4 x2dx 2 ,

where

i 7x2 _ (Xl, x2) x2_x 2

and o

V a2a 4 (Xl,X2) - @2 - ala 4 -_ x +

p X* J .
aia__4x2 :1. _(xi,x2) x Qx

+ a2 / --_xI 2 2,

d

/ x3where = :X:g + "_x 2

a I > 0, a2 > 0, a4 _ 0,

The conditions for stability are

(34)

and

2 2 2a2a 4 _ - a 2 - ala 4 - a2/2 > 0

a2a 4 _ - a22 - al a2 > O, _xx I < O.

......... (x)x + a4x + a3x + g + f(x) = 0.

The matrix form of the equation is

0 i 0 0

0 0 i 0

0 0 0 i

-f (Xl) -g (x2) -a3 -a4

Xl x2

X •

m
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The corresponding Liapunov function is

V=XTS x =

2 _ F(xl)

2

x i

a4 f(xl)/

x I

a4 f(xl)/Xl

a3 _ f' (Xl) + 2 _(x2)
x2

f(Xl_xl 0

a4
+ g[x2)/x 2

2 a2

f(x!)/Xl a4 _ + g(x2)/x 2 a4 + _4

0 _ a4

or

V = (x4 + a4x 3 +Ax 2)

a2 2

2 + a-_ (x3 + a4x 2 + a4/a 2 f(xl) ) +

i

+ a4 (a2 A -

2 Á___ 2

a4f' (Xl)) x2 + a2 (2a 2 A F(xl) - a4f (Xl)_

+ 2 a4_oX2
rg(x2) ] + _g(x2) x3x-_ -- a2 x2dx 2 2

where

= a3 - a2/a4 , f'(xl) = df/dx I ,

i
F(Xl) = f(xl) dx I,

o

and

x
_2

G(x2) = J g(x2) dx2,

o

and

= 2

where

fit =

g(x--2)_ - a+ f'(x±)
x2

d2f and g' = d_g__.

dx--_ dx2

a4

i
I

]

I
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The conditions of stability are

am > 0, a4 > 0, _ > 0, _a 2 _ --a 4 f'_ > O,

_a 2 A F - a4 f2_ > 0, g(x2) x3 - a2x2x 3 > 0,

> 0, a2 - g'(x 2) > 0,

and

g(-x2) A - a+f' (Xl)
x2

+ 2 f" (Xl) x > o.

.......x + a4x + a3_ + g(x,{) + f(x) = 0.

The matrix equation is

0 ! 0 0

0 0 i O

X =

0 0 0 i

-f(xl) _ _ a3 _ a4

x I

g(xlx 2)

x2

The corresponding Liapunov function is

X •

V=XTS x =x r

or

2 AF(Xl)

2

xl

a4 f(xl)

Xl

f(x I)

Xl

f(x I)

a4 x I

a3_-f'(xl)+ 2x_

a+_ + g(xl,x2)

x2

f(xO
xI

a4 A + g(xl,x2)

x2

af + a2

a4

a4

V = (x4 + a4x 3 + _ x2)

+ i/a 4 (a2

x 2

+2 a4 So

0

+ a2/a4 (x3 + a4x 2 + a_ f (Xl)) 2 +

a4f'(xl) ) x2 + i/a 2 (2a 2 _ F(x I) - a4f2(xl) ) +

I g(xl_x2) -- a2) x2dx 2 + 2 (g(xl x2) - a2x2x3)
X 2

a4

X
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where

F =

xl f(xl ) dx I ,

O

G

x2 g(xl,x2 ) dx2,

o

f' = df(xl)/dXl , _ = a3 - a2/a4 '

and

I g(xl_x2) - a4f'(xl) + 1/2 f" (Xl) x2= - 2 x2

" i/x2 - _2 _Xl j 2

+

+

a _g(xl _ x2)] 2- - -_x 2 x 3 •

The conditions for stability are

a2 > 0, a4 > 0, _ _ 0, a2 A - a4 f'(xl) > 0,

2a 2 _ F(Xl) - a4f2(xl ) > O, g (Xl,X 2) > a2x2x 3,

x 2 "_x2 --

and

(36)

g(xlax2) _ _ a4f'(xl) + 1/2 f"' (Xl) x2
x2

f Ja4 _g(xl, x2) dx > 0.

- Ff "_Xl
o

"x''+ a4x" + _ (x,_)x ° + a2_ + f(x) = 0.

g(xl_x2) +

i/x2 _Xl

The matrix form of the equation is

X

0 i 0 0

0 0 i 0

0 0 0 i

- f(XlJxI -a2 - _ -a4

x , where _ =_(Xl,X2).
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The corresponding Liapunov function is

i ala4 F(Xl) + Y

._ - a2

v= s x =
a4 f(xl)

xI

f(xO
Xl

0

a4 f(xl)

Xl

a2a 4 + Y

2

ala 4 + a2

a2

ala4

a2

f(xl)

Xl

2

ala4 + a2

a2

a4 - ala 4

a2

a4

0

ala4

a2

a4

or

ala 4 2 a2

+ x 2) + a4 (x 3 +

a4 2

+ _2 f(xl )) +V = (x 4 + a4x 3 a2 a4x 2

i o 2 -

+ a2_4 (a2a 4 _ (x l'x2 _ %1_) - a 2 - ala4 ) x3_ +

I _ 2 2 2a2a 4 (ala 4 F(x I) - a 4 f (Xl))+ +

i 2al _ _2 _ 2 , ala_ _ x2dx2!+ _--_ _J la2a4_(Xl,X2 ) + (- a2/al)f (Xl) -

-where

I Xl x2

o_ _ Fala 4 "]

and F f(xl) dxl, Y = _o L-_2 _ - f'(xl) J '

V - 2a 4 - f'(xl) x2 - a2 4a2 _ (Xl, x2) +

x2dx 2

I 2 2- a2 - ala 4 - i a 2 (Xl,X 2 x 3 +

+ 2x 2

x2

_o _ ala4a2 ]_(Xl _x2)"_ xl -- f" (Xl) I x2dx2 '

X



(37)

- 78 -

where

Y = ala 4 _
"_x---_ f"

o a2 _ Xl --
x2dx 2'

and

The conditions of stability are

2 2

aI > 0, a2 > 0, a4 > 0, a2a4_- a2 - ala 4

aI - f, (Xl)

2 2

> O, a2a 4 _ - a 2/aI, f' - a4

la4 _ f"l < 0, a2a 4 _ 2a2 "_x--_ -- - a 2 -

2 2 f2
ala 4 F(x I) - a4 (x I) > 0.

"x"+ a4x" + _(x,_)"x + g(_) + alx = 0.

The matrix form of the equation is

0 I 0

X
D

0 0 1

0 0 0

-g(x 2)

-a I x2

The corresponding Liapunov function is

- 2 (Xl, x2)

a I > 0,

2

ala 4 _ 0,

0

0

x, where

i

-a 4

> O,

_= _(Xl,X2).

V=XTS x = xT

a_ a4 +

a2

ala 4

al

Y

2
xl

ala 4

I _2a4G(x2)+ Y_

2 g__(x2)ala4 + ,
a 2 x2

ala4

a2

a I

2

ala4 g(K2)

_2 + _

+
a2

a4

ala 4

_2

a4

i

X
w
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or

I - " " ala4 x 2 a2 ala4 2

v _x4 + a4x3 + a2 2) + a4 (x3 + a4x 2 + -.a.2 Xl) +

i 2 2 2

+ a2a4 _2a4_(Xl,X2) - a 2 -ala 4 _ x3 +

+ 2 a4 f Fg(x2) ] J F

I o L_T - amJ_2_ + 2 kfCx2)x3 -am_2x3]+
+ 2al . 2 2

p x2

G(x2) = Jo g(x2) dx2' _ = _(Xl'X2)'

x 2

Y =_o _'_- -- al x2dx2 '

and

I x2
- o ala4 F g(x2) a_] 2 ,2ala4- x^ P _(Xl_X2)

I --" a2 L x2 -_IXZ a2 ,# -fixI x2dx 2 +

-._L F _ , 2 a2_;] 2

I where a2 La2a4 _ - a2g " ala4 --_2- _'_J x3,

/_ _- x 2 + -_'_R_-_x3 .

The conditions for stability are

I g(x2) .

a I > O, a2 > O, a4 > 0, =_2-- - a2 -> 0,

a2a4 _ (Xl,X 2) - a 2 - ala 4 > 0,

I

I
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x2

/oxg _ xI x2dx 2
0

and

2 a2 _
a2a4 _ - a2 g' - ala 4 -- _- > 0.

This completes those examples found in Mekel's thesis, _ .

The next example comes from Puri, _ , and is a time-varying linear system.

mo

(38) "_" + a3 (t) x + a2 (t) _ + al(t) x = 0.

x = A(t) x =

The matrix form of the equation is

0 i

0 0

0

i

-a I -a2 -a 3

QQ

x; x I = x, x2 = x, x 3 = x.

The form of the Liapunov function is

V=xTS x =x T

SII S12 S13

S12 $22 $23

S13 $23 i

X

where the time derivative is given by

= _ s x + _XTS __ + _S x = xT S_ + _ + S A x =

= __ E2 S A + ___ x = _XT T x =

=_xT

ill 2alS13

0

O

2SII - 2a2S13 - 2alS23 +

+ 2 S12

$22 + 2 S12 - 2a 2 $23

0

2S12 - 2alS13 - 2al+

+ 2 S13

2 $22 - 2alS23 + 2S13+

- 2 a2 + 2 $23

2 $23 - 2 a I

X_

m
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Let the off-diagonal elements in the matrix _ equal zero.

TI3 element let SI3 be identically zero. Then, S12 = aI.

To simplify the

To simplify the

TI2 element let S23 =0< 3 = constant. Then, SII

T23 element, S22 =°<3a 3 + a2. The resulting Liapunov function is

or

V -- _xT

=o<3a I - h I. From the

O<3a I - hI aI 0

aI °<3a 3 + a2

0< 30

%

i

+
• 2 2

V = (:<3al - al) Xl + 2alXlX2 + (a2 +_a3) x2

+ 2_ 3 x2x3 +X 2 '

and

= X T x = x

0

0 0

2al + _2 +°_3 _3+
- 2O<3a 2

0

0

2_ - 2a 3

I = (W3_l -"_i)x2 + (2al + _2 +_3 &3 - 2% a2) x2 +

2
+ (243 2a 3) x3 •

The conditions for asymptotic stability are

°_3 h I - a I < 0 , t >/ 0,

I 2al + _2 + °<3a3 - 2_ a2 W. 0, t >/ 0,

o<3- a3 W. 0 , t _/ 0 ,

_<3al - &l > 0, t >I 0,

- hi)

X

X
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The following five nonlinear, autonomous systems were a!!alyzed by the

"common Liapunov function" technique of Goldwyn and Norendra, _5_ .

(39) "_+ f(x,_)_ + g(x) x = 0.

The matrix form of the equation is

= A x ; xl = x, x2 = {, f = f(xl,x2) ,

and g = _(Xl). The Liapunov function for the corresponding linear system,

where f, g _ O, is

V=_XTP x =_x r

PII PI2

PI2 P22

and

=- _ETR x,

where

Q

2 g PI2 gP22 - PII + fPl2

gP22 - PII + f PI2 2f P22 - 2 PI2

For constant f and g, the Routh-Hurwitz conditions demand f, g >I 0 for

stability. Hence f = 0 is in the allowable range. If f is set equal to

zero, then

2 g PI2 gP22 - PII

gP22 - PII - 2 PI2

Since for q > O, _ can never be positive definite if P is positive definite:

thus we must take _ = O. This results in the following relationships

PI2 = 0 , PII = P22 g '



- 83 -

where P22 is assumedto be i. Therefore, we have a CLF for the linear system

when f and g are nonnegative constants. The corresponding Liapunov function

for the nonlinear system is

and

V

f_Xl

o

2
x I g(x I) dx I + x2 ,

• 2

V = - 2 f .-CXl,X2) x 2

Xl 2
where 2 xI g(xl) dx I = gx I

o

, if g is a constant.

The conditions for asymptotic stability in the large are:

f(xl,x2) > O, g(xl) _ 0 for xI _ O,

Xl

_o Xl g(xl)dxl---'-m _ as IXll---+_"

(40) x + f(x) _ + g(X) x = O.

This example is a special case of example (39) but the state variables

_ _Xl

are chosen such that the "average dissipation", f(x ) = do f(xl) dXl,

xI

is more significant than the "instantaneous dissipation", f(x). This method

/ e

is called Lienards transformation and the resulting matrix equation is

= x, xl = x.

g(xl) 0

^
For this case, the _matrix for a system where f and g are assumed constant

is

Q

A

a (f PII + g PI2) f PI2 + g P22 - PII

A

f P12 + g P22 - Pll - 2 P12
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Now if we select Q to be

2(f PII + g PI2)

Q
0

0

0

we have a positive semi-definite matrix for

A

f PII + g PI2 > 0.

From the zero terms, we find

ix

P12 = O, Pll = g P22, and f g P22 > O.

Let P22 = constant = io Th_s, we have a CLF for the linear system. For _he

nonlinear system we have:

_o xl 2V = 2 x I g(x I) dx I + x 2 ,

A

V = - 2 g f x12.

From V and V we obtain the following sufficient conditions for asymptotic

stability in the large:

A

f (Xl) > 0 for x I 0 ,

g (Xl) > 0 for x I _ 0 ,

_o xl Xl g(xl)dxl--_ _ for /Xl /---_ _ •

Note, the above conditions do not demand that the instantaneous dissipation be

positive, but only the "average" dissipation be positive. An example of this,

consider

g(xl) = i,

f(xl) = x 4 - 7 x 2 + 12,

then,

A 4 2
f(xl) = x l - 7/3 xl

5
+12>0 for all real x I,
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and

f(xI) < 0 if - 2 < xI < - /_-andV_-- < xI < 2.

Second-,0rder Nonlinear Feedback System_

The feedback system is described by the matrix equation:

xl -g(xl) I i Xl

I
x2 "h(xl) -f(x2) I x2

-- [

This equation can be reduced to a special case of the single second-order

equation in example (39). But the difficulties in applying the previous

results are that the derivative of g (Xl) must exist, and the "dissipation"

I

term, the coefficient of Xl, in the single second-order equation is not

of constant sign in the vicinity of x I = x 2 = O.

In the CLF - technique the corresponding linear equation becomes

OI •

x + (f + g) x + (fg + h) x = 0,

xI = x, x2 = x + gx,

f, g, h are constants.

The system is stable if

fg + h > 0,

f + g >0.

The _matrix in this case becomes

Q (f,g,h) =

P22 h + Pl2(f + g)2 (PII g + PI2 h) -- PII

P22 h + PI2( f + g)" PII 2(P22 f " PI2)

For the nonlinear case, the choice of PII, PI2 must be such that for constant

f, g, h we get the above stability requirements. From these conditions, we

see that if g > 0, then any f greater than some minimum, _ , is satisfactory.
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Thus, the values of Pij are taken as

Pll = h + _f (_ + g),

PI2 = f,

P22 = I,

and we have

R

2(h + f g) _ + g) f (f - f_

f (f - f_) 2 (f - f_)

Therefore, Q is positive semi-definite if (h + f__)_ + g) > E f2 (f - f_)l >i0,
4

For the nonlinear f(xl) we define f as

f = MIN If(x2)_ ,
x 2

m

thus f >/ f . We also define f as

f = MAX (x2 o

x2

For the nonlinear problem, we make use of the above CLF and obtain the

following new Liapunov function:

where

XT X.

The conditions for asymptotic stability in the large for this nonlinear

system are
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f g(xI) + h(xI) > 0,

+ g(xl))_ g(x I) + hCxl))>

-
4 >_ 0,

_oxl _f g(xl) + h(Xl)] xldx I_ =_ as
fEll _ o_ .

An example of the above problem with non-differentiable functions is:

-Lx_L
f (xl) = 2 + ae

-x_
g (x_) = - e ,

, a > 0 ,

and

hCxl) = 6 + 2tXlt.

_forp f = p a-d _ = P + a N_ (f g + h_ _ -2 + 6 = 4 > 0,

f + g >I 2- I = i > 0, and _ g + h)_ + 4[_) >/ (4)(1)= 4. Thus, we

could let f2 (3 -f_) / 4 = 3, or f = 5. Therefore for stability "a"

can be in the interval 0 _- a ___ 3.

eee

x +f (x,_,_)_'+_ (x,_) _+h (x) x =0o

The standard state variable form gives

Xl = x2

X2 = x3

X3 = - h(Xl) Xl - g (Xl'X2) x2 " f (Xl' x2' x3) x3

where x I = x. When f, g, h are constants, the Routh-Hurwitz conditions for

stability are

f, g, h > 0 ,

fg-h > 0o
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This rather general third order, autonomoussystem will be analyzed by first

considering several special cases.

(A) "_ + f(_) _ + _(_) x + h x = 0_ h Econstanto

using the usual notation, the _ matrix is

R

2 PI3 h

Pl3g + P23 h - PII

P33 h + PI3 f - PI2

Pl3g + P23 h -P{I P33 h + PI3 f - PI2

2(P23 g - PI2 ) P33 g + P23f'P22 " PI3"

P33 g + P23f-_i3 2(P33 f - P23 )

The choice which is made to simplify _ is to let all qij = 0, except

q22 and q33 o The elements q22 and q33 are selec_to be

22 = 2 (mg - h),

33 = 2 (f - m),

where m is a constant. The resulting Pij's which are obtained are

PI3 = 0, P33 = I, P23 = m , PII = mh, PI2 = h,

P22 = _ + mf.

Since Q is positive semi-definite, it is necessary that ,_ - m >/ 0 and

m E - h >/ O, where

-- x2

and

g = MIN Ig(x2)l ,
= x2

and where Q_Oo

is maximized,

The value of m is selected such that (f - m) (m g - h)

or

m _
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Thus, _ is positive semi-definite if g > 0 and

f_ -h > 0o

Now using the Pij's and the _matrix, we get the following Liapunov

function for the nonlinear system:

V = m h xI + 2 h xI x2 + 2 (x2) + mf(x2) x2dx 2
O

+ 2 m x2x 3,

and

v ____mx = __

mh

h + m f

0

g m

0 m I

X

where P* is positive definite. The system is asymptotically stable in

the large if

_, _, h > 0,

f, g-h >0.

(B)x'+f(x) _'+_(_) &+h(x) x=09

+

_e xlV = 2 m h(Xl) XldX I
2

+ 2 h(Xl)m_x2. ---_ + 2 mx2x 3 + x3 +

x2+ 2 _g(x2) + mr(x2)

The constant m in V must be redefined,

x2dx 2 •

Since we replaced h by h (Xl) in this case, the change in the Liapunov

.fx function is to replace h x12 by 2 h (Xl) x I dXlo The resulting Liapunov

v O

function takes on the form:



The time derivative of V gives

_=-_ _x =-x T

- 90 -

0 0 0

0 2(rag- li') 0

0 0 2(f - m)

!

where H(Xl) = h (xI) x I and H = d_

1.
that

f-m >/ 0,

Thus for Q >i. O, it is necessary

X

and

where

m

7

mg-H >10,

Q

H = Max (x 1

x I

Let m be selected so as to maximize the product (f - m) (m g - H

m -- g+H t
o

2g

m

P
). Then,

Thus, the Liapunov Function for the nonlinear system is bounded from below

by

oxl "' 2 2V _ 2 m H(xl) dx I + 2 H(Xl) x2 + g x2 + m =f x 2
+

2
+ 2m x2x 3 + x3 •

To summarize, the system is asymptotically stable in the large if

h(x ) > o, x1# o,

f , g , H' > 0,

f g - H' > 0,
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xl a(Xl)

o

dx I _ o_ as I Xl I ---------_ _

(c) The General Case

We want the general case to include the two special cases A and B.

Thus, in the integral in V, the functions f and g are replaced by functions

A

of only x2; namely, _ (x2) and f (x2). The new functions _ and _ must reduce

to f and g in case B° Therefore, the V-function is

_o xlV = 2 m H(Xl) dx I + 2 H(Xl) x 2 + 2mx2x 3 + x9 +

_x 2

+ 2 (x2) + m f (x2)

A
where m, g and f are to be determined.

0

0

0

X 2 dx2,

The time derivative of _ becomes

_=-__TR x ---_ 2(rag - H' )

A

To insure that _ is positive semi-deflnite, we demand that

/

mg-H >0,

f-m >0,

I

7

4 ( mg__ - H ) (if - m) - Max

and

A

(g - g_ + m (f- f)

(g-_) +mCf- > O.

^ ^ I- JThe functions f and g are now chosen to minimize Max (g - _) + m (f - _)
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First, the following definitions are given:

(x2) = MAX _f(xl,x2,x3)] ,
xI , x3

(x2) = MIN _ (x I ,x2 ,x3)]

Xl,X3

A

f (x2) = f (x2) + £(x 2)

2

g(x 2) = MAX _g(xl,x2) _

x I

_(x2) = MIN _(Xl,X2) _

Xl

+ (x2)
• 2

f = MAX x2) --'f (x2

x2 2

f = MIN If(x2)_
= x2

i
x2

Thus, the last condition which is stated above for a positive semi-definite

becomes

m

/
q - 4 (m g - H ) (f - m) - (g + m_) > 0.

If now m is chosen to maximize q, we obtain

m= fg+2H - f •

_2 + 4g__

t

For this value of m, q > 0 if f g - H > E

where

_-2 --E = f H + f g (f g + H ) + g
= _ __

g ,

In summary, the general third order system is asymptotically stable

in the large if:

h (Xl) > 0 for xI _ 0 ,

i

/

 ,s,H >o,



m

!
f g - H > _ _0, and

xl H (Xl) dx I _ _<_

o
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as IXl0 _ _"

Special Cases of Part C

(i) Let f, g and h be constants.

and the Liapunov function is

Then f = g = 6= 0, f = =f' g = _, H -h,

2

V _ h (f_ + h) x I • 2h XlX 2 + 2f_B__+__) x 2 x 3

2g 2g

2 2

+ x3 + 2g x 2 + f (f g + h) x32

_r- 2g

The conditions for asymptotic stability are

h > 0, f > O, g > 0 and

fg-h> O.

(2) Let f be a constant, g = g(x) and h = h(x)o Then f = g = 6 = O,

i
f = f, and g and H are defined as before. Thus, the stability conditions

are the same as Barbashin's results:

h(xl) > O, xI # 0

m

I

f, g, H > 0

!
f g-H > 0

(3) Let f = f(_ ) and g = g(_). When h is a constant, we get case A.

When h = h(x), we get case B.
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f(xl,x2,x3) = i + a

Ix21 + _.

2 2 2

-(x I + x2 + x3 )

q" ae ,

6 2
- (xI + x2 )

g(xl,x2) = 6 + b e + 2 b _

4

x2 + 2

h(xl) = i - xI i -- (I + xl)e for x I > 0,

h (- Xl) = h(xl).

We want to find the range of a and b so that stability is guaranteed. Thus, we

obtain the following:

(x2) = i + a +ae

Ix21 +I

2

-X

2

f (x2)= I

/k

f (x2) = a
2

2

i _x 2
e

f = Max

x2

-x 2

+

2

+ i

Ix21

+ i

a

f= i
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g (_2) = 6

(x2) = 6

+ be

2

-x2

+ 2

4

x2

b

+

A

g (x2) =6 +b

2 I
2

-x2

e + 2

4

x2 + 2

1
- [
g =Max b e

x 2 2 L

$--6

(xI) = xI - 3

(-xI) =-u (xI)

-x 2

+ 2 =b

x24 + 2j

Ii -Xl 1- (I + Xl) e , x I > 0

I -X'l
H (Xl) = i - 3 x I e . , x I > 0

/ /

H (-Xl) = H (Xl) , and

/
}{ =i .

Therefore, f g - V = 5 > 0 and we can select _ < 5.

I _ ===_/ ,_2 --7 7_, _ _ --7" ,..2
f _I + (_6,(. o +H) + g g

= =

I :_/a2+ Tab+ ob2 <s.

or 2 < 25.a +7 ab + 6 b 2

Then,
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The region of allowable a and b for asymptotic stability in the large is

a >/ 0, b >I 0, a2 + 7 ab + 6 b2 _ 25.
Ooo Do

(D) x + fx + _ (X) x + hx = 0.

In this case, f and h are constants. Case D is a special case of C

but if considered separately, less stringent conditions for stability can

be derived. The state variable form of this equation is obtained by a logical

extension of the Lienard transformation:

O

Yl = Y3

Y2 = - h Yl

O

Y3 -- - G(Yl) + Y2 f Y3

where

Yl = x

and

G = G (yl) = g (yl) d Yl '

Assuming the usual forms of V and _, we obtain for the Q-matrix the following:

2(h PI2 + G/Yl PI3 )

hP22 + G/Yl P23 - PI3

hP22 + G/y I P23-PI3 hP23 +_Yl P33 + fPl3 - PII

fP23 - PI2 " P33-2 P23

hP23 + G/Yl P33 + fP13-_ifP23 " PI2 - P33 2(fP33 " PI3)

We now select the elements of P such that

Q

2(f G/Yl - h) 0

0

0 0



Thus

PII

P22

2

= f + G/yI_

= f/h, PI3

and, hence

' PI2 = - I,

= f' P33 = I, P23 = 0,

or
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iV = f2 Yl 2 + 2 G(Yl) dy I - 2YlY 2 + f/bY22 +

O

2

+ 2 f Yl Y3 + Y3 ,

f"[ -IV = 2/f , f Yl h Yl dYl + -_- (Y2
_O L J

h 2
m

- f Yl )

2
+ (fYl + Y3 ) '

and

2
= - 2 (fG/y I - h) Yl

In summary, the system is asymptotically stable in the large if

fG(Yl)/yl - h > 0 ,

_O
Yl <f G(Yl)lY I - h) YldYl _ oo as lyll

__oO.

In passing, we note that onl_G (yl)_ , mmst be positive and not necessarily
l--

LYl J

g (yl). An example of this fact is:

f = 36, h = 186,

g (Yl) = Yl - 7 yl 2 + 12



(43)

I

where

g (Yl) _ 0 when - 2 < Yl

The corresponding _ isly 4

L YlJ

mini(tlyl)]is 18.___7.36

2

- 7 Y I

3

Thus, f G(Yl) - h

Yl

> f(187_- h = i > 0.

are satisfied.
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<- _r_and V_ < Y l < 2.

+ I_, which is positive, and

J

Therefore, all stability conditions

The next example is from a paper, _ , by DiStefano. The subject of

the paper is concerned with the best choice of state variables for the stability

studies of nonlinear systems by the Liapunov Method,, The example is the same

as one of Schultz and Gibson's, example (2) in this compendium. But by a different

choice of state variables, DiStefano was able to relax some of the conditions

on the non-linearities in the system.

Second Order Example

The system equations using the canonical state variables as per Schultz

and Gibson are

Xl = x2

_2 = - x2 - x2 f (Xl) - XlX2 df(Xl) - Xl _ f (Xl)°

dx I

The resulting Liapunov function and its time derivative were found to be

V = 2 x I f (xI ) + x I dw dx I + (x I + x2) ,

O
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V° = - 2 x22 d-_dw - 2 _ x_ f (x l) ,

1

where w = x I f (Xl). Thus, one of the restrictions on the nonlinearity is

that w has positive slope.

By using "block diagrams" the author determined a new set of state

variables which can be shown to be stable without restricting the derivative

•dw_w.. The resulting set of equations and the Liapunov function, which was

dx I

derived by the Variable Gradient Method, are

6

xI = - xI f (Xl) + x

i

x2--Xl f (Xl)(I-@) - x 2

pXl

' <v=x 2 +2 (_-1) xlf (xI) dx I

V = - 2 x2 2 _ 2 (_ - i) Xl 2 f2

Thus, for V > 0 and V < O, it is sufficient: that

I

I(44)

but no conditi_-_., is placed on the slope dw .

dx I

The final exampl e was taken from a speech

in Iowa, in 1964.

Third Order Example

The system equations in state variable form are

Xl = f (Xl ' x2)

x2 = x3

_3 = - P(Xl) - q(x2) - a x 3 .

(xI) •

> i and w = x I f(xl)

_ given by Dr. J. LaSalle

> O;
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The choice of ____for this system is

d _ (Xl)

cK(xl) + ' dXl x2

VV = _(Xl) + _(x2) + 2 cx 3

2cx 2
I

+ 2x 3

where-<, _ and _ are undertermined functions and C is an unknown constant.

Therefore, the time derivative of V is given by

: _)T --_ = _f + _' f x 2 + _x 3 + _/_x3 + 2cx23 +

2

- 2cpx 2 - 2px 3 2cqx 2 - 2qx 3 - 2acx2x 3 - 2aX3o

Let

_ = 2ac x 2 + 2q(x2)

o_ = 2x I

= 2p(xl) , and c = i.

Then, V becomes

V =

2 xI + pl (Xl) x2

2 p(x I ) + 2a x 2 + 2q (x2) + 2x 3

2 x 2 + 2 x 3 T

X ,

or

F---

= - 2 IP(xl) x 2 + q(x2) x 2 - d P(X I)
L_

dx I

- 2

f (x I , x 2) x2_
+ 2 x I f (x I , x 2) +



We now check the curl equations:

_2_2V - 2p(x) = V

_Xl_X 2 -_x2%x I

- I01 -

2v _ 2V ,

_x3_x2 2 _x2_x3

"_2 V "_ 2v
= 0 =

 Xl X3 •

Thus, by line integration we can obtain V:

/oXEV = x_ + 2 p (Xl) + q (x2)

+ 2 x2 x3 + x2 .

x2 d

Therefore, the conditions of asymptotic stability are

xI f (Xl, x2) _ 0 for x I _ 0

p (Xl) x 2 + q (x2) x2 - d p (Xl) f (Xl, x2)

d x I

a- I >0

p (Xl)+ q (x2) > O.

2
x2 + a x 2 +

x2 >o
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i. Some Definitions and Basic Theorems

In this section we set down some basic definitions and theorems which are

used thruout the ensueing work. Thorough discussion and proofs are available

in various text books and monographs including II_ , _4_ and _9_ . We are

primarily concerned with a system of autonomous differential equations of the

general form.

m • = • (x) , (o) =0

Let _ denote the open sphere I[_II _" R and H R its boundary and

I assume that (i) satisfies the existance and uniqueness theorem in a regionSA. Liapunov gives the following definition of stability of the origin.

Definition I: The origin of (I) is stable if for any _ SA there is a

$8(_) ___- S_ such that if _ (t, _o_ is the solution corresponding to an

initial vector _ o which lies in SS, then_ (t, _ ) lies in S_ thereafter.

Definition 2: The origin of (i) is asymptotically stable if the origin is

stable and there is a _o > 0 such that_ (t, _o) ---_0 as t_+ OO for

all Xo in S_o.

I Definition 3: The of (i) is unstable whenever it is not stable.
origin

- Definition 4: The origin of (i) is globally asymptotically stable if it

I is asymptotically stable and $6o includes the whole state space.

In the sequel we will direct our attention to control systems which

include one or more nonlinear functions _ We will not in general

specify _(0") completely but will consider a class of functions which

satisfy certain prescribed conditions. A function belonging to this class

I will be termed admissable.

Definition 5: The origin of the control system state space is absolutely

I stable if it is globally asymptotically stable for all admissable functions

I

(i)



.
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Theorem i: (Liapunov Stability Theorem). Whenever there exists a positive

definite function V(_). in SA whose derivative V along the trajectories of (i)

is negative semidefinite in SA then the origin is stable.

Theorem 2; (Liapunov Asymptotic Stability Theorem}o Whenever there exists a

positive definite function V<_) in _ whose derivative V along the trajectories

of (i) is negative definite in S_ then the origin is asymptotically stable°

Theorem 3: (Liapunov Instability TheoremS. If there exists a positive definite

function V(_ with continuous first partials in _ and if-V is negative

definite in SA then the origin is unstable.

Theorem 4: (Barbashin-Krassovskii complement to Theorem 2) If the conditions

of Theorem 2 hold and SA = S_ and V __ with ]]_ II, then all solutions

tend to the origin.

Theorem 5: (LaSalle, Barbashin and Krassovskli, Tuzov_

If (a) V(_) _ oo with II_II, (b) the locus of points such that V = O

contains no nontrivial solution, (c) V is positive definite and (d) - V is

positive semidefinite then the origin is globally asymptotically stable°

Equations of Motion

Much of the original work in the study of nonlinear control systems was

based on a model composed of a linear plant and a nonlinear control element

or actuator° If the actuator contained no dynamic characteristic, i.e°, the

feedback acted on the plant directly thru the nonlinearity, then the control

was called 'direct'. On the other hand if the feedback acted thru one or

more derivatives as well as the nonlinearity the control was termed 'indirect'.



This is illustrated in fig. (I).
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The system

plant

(a)

c(t)

' l

I actuator plant
(b)

c(t)

fig(l)

in fig(la) is a direct control system. That in fig(Ib) is an example of an

indirect control system. In present usage the term 'indirect' refers

strictly to the configuration of fig(ib).

In general we will consider r(t) = 0 and it is clear that many control

systems with a single nonlinearity can be put in the configuration of fig(la)o

In particular, the system of fig(ib) is readily transformed into the configura-

tion of fig(la). However, the distinction between ,'direct' and 'indirect'

control systems is significant if we agree that G(s) be stable, i.e., all

poles of G(s) have negative real parts. In this case the linear part of the

indirect system has a pole at the origin and is unstable whereas the linear

part of the direct system is stable. The treatment of the two situations will

be different.
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In more general cases of interest, however, G(s) will have one or more poles

at the origin and possibly poles elsewhere on the imaginary axis° Hence in

more general situations the terminology of direct and indirect control loses its

mathematical significance and it would be more convenient to classify the system

according to the location of the roots of the characteristic equation of the linear

part of the system. However the terminology still has somephysical appeal and

will be used°

If G(s) is a real proper fraction in s with the order of the numerator less

than or equal to that of the denominator its partial fraction expansion takes the

form

o< I o<C(s) =o_ o +_ + . + n

S -h I S -_, n

where n is the order of the denominator and _-'s which are not real occur in

conjugate palms. Then the system in fig(Ib) can be redrawn as in fig(2).

Yl ;_

o

o O

o o o

o

o O

%._

r

I

r

i

fig. (2)
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The system in fig.(2) can be described by the system of equations

Yi _iYi + _ i = I, 2, ...

n

i=l

or in matrix form

y = Ay-_ I

0_ --t--= c y -/0 6

=

where A = _i o o . . o

o >'2 o . . o

• • • • • • • . • , • o o

• • • o • • • • • • •

0 0 " " _n

-i

-I

-t

c = (- I,- 2, •" °,- n_; P=°<o

k...... Since in general we are dealing with complex vectors and r_=rices the
( superscript t will designate the Hermitian transpose here)

This is Lur'e's canonic form.

The canonic form of the control system equations can be obtained in another

way. Suppose the transfer function G(s) is given as

(i)

G(s) = BoS + B I s + oo. + Bn

n n-i

S +c_ I S +°..+o( n

Then fig(Ib) can be redrawn as in fig(3).

) i
N n n- i BoS

S + iS +°'°+ n + BIS +...+ Bn

figo(3)
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The set of equations describing this system is

(Dn

where

1

+ IDn-I + ....+ n_ _ = _ I

_(_)

- (Bo Dn + BIDn-I+'''+Bn)_ = (_IDn'l+_2Dn-2 +'''+_n_ - P_

i= BoO( i -Bi i = i, 2, ..., n

p = B0

Now the state space variables are defined by

n-i

(xl, x2, ..., Xn) = _,D_, .....,D _)

so that the following first order system equivalent to (2) is obtained

D

Xl

I
x2

Xn-_

= q(_)

O i 0 . 0

0 O i o . . O

0 0 0 0

-Oi n - @(n_l_n_2 -0< 2

0 I 'Xl_
0 x2

i Xn_ll

-=_l I I Xn /

+

I 0

0

o

0

= _n x i+ "'" _i Xn "

or in vector notation

= B-_-- _

t
CY: V _ -s

, .

(2)

(3)
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where

U ----
m

; V = I
This is sometimes referred to as the 'state _ representation of the system.

The eigenvalues of the matrix B are the characteristic roots Qf

the linear pe_tion of the system. Let these be distinct and designated by

_1, _2, •"" _ n" Then the canonic form is obtained by making =se of the

following Vandermonde matrix.

I i _ _

A.2 . ., i'
_2 _ 2

The canonic variables _ are defined by the transformation.

Equations (3) become

. __ }
.... _ _" y - /o_

1

;kn

n-1

U

(i)
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where

-I

AnT BT

-I
= T u

"t -t
C = V T

:liloo_2 o ..o
• • b

0 0 . . o

0

In what follows the form of eq. (I) or (3) will be taken as representative

of an indirect control system. _wever, it wlll not always be assumed that

the e_s. are in canonic form° it will be stated when this assumption applies.

The form for the direct control system is

$ =

t

If _o is zero, note that (4) becomes

y = A y -

t
if' = "a"y

The 'characteristic' function Q( ) will be assumed, for the present, to

have the following properties

I. _(_) is defined and continuous for all 0-_

2. q(O) = 0 and g'_(_) > o for all O';e O

3. The integrals

(g")d£r diverge

(4)

(5)
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Any function having these properties is termed admlssable. At times it will

be necessary to modify the requirements on the class of admissable functions.

3. The Proble m of Lur'e,- Indirect _ontrol

Initially Lur'e and Postnikov obtained sufficient conditions for the

absolute stability of a class of direct and indirect control problems. The

treatment given here follows a reformulation of the problem due to Lefshetz.

The indirect control system eqs. are

y = A y - b

t

It is convenient to transform from the varlabies (_,_) to new variabies(_,_)

defined by the transformation

From (1) if y and _ ---_0 so does _ andS'. If the converse is true then

_,_) stability describes the _, _) stability.

have a unique inverse, i.eo, we require

-t p

For this to be true (I) must

Now

A b

-t

c ?

Since A is stable we know that I A _ _ O.

_-t -I_

_c A b

Hence we must have.

?

(2)
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This relation between parameters of the system is assumed to be true.

equations become

The system

t. (3)

If e_. (2) holds the only singular point of (3) is _ = O, q_= 0 since

(_) = O if and only if 0_ = O. This is a necessary condition for absolute

stability°

The method used to determine the sufficient conditions for absolute stability

is based upon Liapunov's assymptotic stability theorem and the Barbashin-Krassovskii

complement. Lur'e and Postnikov considered a Liapunov function of the form

vC_,_) = _ B_ +_(0_>; _(_)=[ 4(O_)a_ (4)
_o

where B is a positive definite hermitian matrix. Recalling that Q'_((F ) > O,

_ O and _(_) = O for _-= O it is seen that _@s_ is positive definite with

that foG"
respect to (x,_). Furthermore recalling the requirement _(O_)_CF

diverges as Q" _ cw) it follows that V ------q_K) for I_(_,0")|_ > {w) and

hence the Barbashin-Krassovskii complement is satisfied°

Differentiating (4) with respect to time

using (3)

• .t t
v(_,_) =_ B_ + _ B_ + _(_)&

• t t _t t t

V = _ A B _ -b B_ _ + _ B A _ -_ B _

t 2

+ _T _ - _

t

(-A B - B A) x +

-t -t t

(b B - i c )x + _ (Bb- i _)

2 2

(5)
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• t * * t t

-V = x C_ + p _ _ + (_ _ _ + _ --_)

-C = A t B + B A

=B 5-1

2

(6)

(7)

(8)

and use has been made of the fact that @ = @* Eq. (6) can be written more

compactly as

)()-V(x,_)= _ ,_*)(_t _ x
P

(9)

According to a theorem by S_,ivester necessary and sufficient conditions

that -V be positive definite is that all of the principle minors of the

matrix in (9) be positive. Hence we require that C be positive definite

hermitian as well as

_ow

>o

P

C r_), I _t -i

I : tel (p- _ C =T)
_t

o_ P

0

Since CI _0 we require
_t -i

There are some co_ents to be made concerning the relationship between

(i0)

the matrices B and C. Eq.(7) is referred to in the literature as Liapunov's

matrix equation. It can be shown (see [i] and _2] ) that if the matrix A is

stable and C is any given positive definite hermitlan matrix then (7) has a

unique solution B and B is a positive definite hermitian matrix. In particular

if A = diag (_i, "°'' 74_n) and Re h i :-M i<.O we have from (7)
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+A, k ) bjk ='Cjk

-Cjk

bjk = A,*j + /_,k

Theorem_ Sufficient conditions that the system of eq (i) be absolutely

stable and that C be positive definite and the inequality (i0) be satisfied.

The above formulation yields more general results than those originally

obtained by Lur'e. For the purpose of comparison an analysis following

that of Lur'e is given. Lur'e considered a special canonical system where

A = diag(A I ,..., An)

t
m

b = (-i,... -i)

t
m

c = (-C_ IJ "'" '- n)

The Liapunov function has the form 6f (4) with C taken as

__t

C = _ + diag(A I ,....,An)

and hence

B =-2_*. _k An ) where -Mi = Rel_ki _. 0
] + dlag (A I J"'J __

_j + 7k k 2-MI 2Mh

To see that C is positive definite note that

(11)

ifA i Z o.

Now

_t
x

_t t _ _t

C _ = x _ _ x + x diag(A I ,...,A,_

IE t _ 2 n 2
x I + I A_. I xlJI

i=l

• t

-V = _ diag(Al, ..., An)

0 for _ _0

t t t t+ _ _ _ + (_*_ _ + _ _) + p _ _*
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Add and subtract ___@ ( t t+ _ _) to -V. Then

• t t 2

-V = _ diag(A I,...,A_} _ + _ _ _ + v_ @_

t t t t
+ (_*_ _ + _ _)- V_ _ (_+
t t 2

= _ diag(Al,...,An_ + I_ + V_ _ 51

+ _(2 ¢P f)t _ _t _- x + q x (_-_)

Since A i _ O we have at least a positive semi-_efinite form for

_)

-v if we require

Eq(12) is equivalent to the n scalar equations

(12)

n

* + _ 2M 2 kAj k k

= O, K=l,2,...,n (13)

or since the only restriction on the A i is that they be greater or equal to

zero we have the requirements on k

n

k K hi* +0__=___kVp __ 0
j=l _ +_k

, K=l,2,o..,n (14)

Equations (13) are called the 'prellmit ; equations. The equalities of (14_ a_e

called the 'limit' equations° If we require that the inequalities of (14) hold

this corresponds to A i > O which gives a positive definite form to -V. If we

allow the equalities then we have some Ai = 0 and -V is only positive semi-

definite.

We arrive at Lure's sufficient conditions for absolute stability by the

following two considerations. We assume that for some classes of systems

under consideration here that whenever the limit equations have a suitable

solution then the prelimit equations have a suitable solution° Hence we reduce

the complexity of the problem by examining the limit system. Also, Lur'e

postulated that the a i are real or occur in complex conjugate pairs corresponding

to real or complex conjugate pair i(Note: It is readily shown that this insures

that the left side of (14) is real). Hence we have
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Lure's Theorem: A system described by the equations

i = 1,2,..o,n _e(Xl) < 0

where complex _%iand oiioccur in corresponding complex conjugate pairs is

absolutely stable if there exists a set of roots al, a2, ..., satisfying

the limit equalities of (14) such that the ai are real or occur in complex

conjugate pairs corresponding to Tkl.

Conditions comparable to (13) or (14) are easily obtained from inequality(lO)

of the Lefshetz formulation,-V is positive definite if we choose

d = Bb- i c =0

2

Assuming the canonical form of the system equations and the above B

n

aj_-%j E k __ + _/_ =0
k=l _j +Tk k 2Mj 2

j=l,2,..., n

or taking the complex conjugate and interchanging subscripts

n

j=l k*j+kk + 2 2
= 0 k=l,2, °..,n

Note that these eqs. are identical to (13) except for the term.

(15)

The Problem of Lur'e - Direct Control

We consider here a direct control system described by the system of egs.

t

_ = C X

where A is a stable matrix and we assume the only singular point of (i) occurs

at the origin. Differentiating the second equation with respect to time

_t_ _t _t_

_= c x = _A_- c b _ (_)

(i)
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Following Lefshetz we define

t ,= _
(2)

so that

® t

(3)

_gkin= the same Liapunov function as f,.-;..rthe !n,!Irect c:_ntrel case
A.

Piffer6r:tiating with respect to _i_e

(4)

t t t t

AtB + B A =-C (5)

t

= 3 b - ! A c

2

and it appears I-hat once again we have a a:..u__....t_ fok_ for -g in the n + I

dimensional space (_, _)

which c_n be n_de positive definite by "'-c"__4_-'_'_._-_,c,<__be positive definite and

t t -I

as was done previously, Ho;_evar, "_*-..__,,is not the ca_e as pointed out by

i{ozenvasser [3] o In fact -V can be _.t mcst z..._=_4,,;,==.=....._ semi-definite in the

n + I i._Jdependent vai_lables _, _), To see tkis xtot that V c_ be written using

(i) and (4)

e ,t t • t •

V = x B x + x B x + q c x

= _ + ! "_ Q) + (_ B + ! _ Q)
2 2

r t _)I= Re _.(2s_ + _ %) (A _ -
(6)
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_t _ _t_
W_mre use has been made of the fact that c x = x c since both "x and c occur

in corresponding complex conjugate pairs. Now since A is a stable matrix we have

IA _ _ 0 and hence there is a one dimensional subspace of the space (_, _)

satisfying A _ - _ _ = 0. This means that _ can be zero at points other than

the origin of _, @) space and is therefore not definite in (_, _) space° Note

that in order to have absolute stability of the system the only critical point

of (i) can be the origin. Hence we mLtst require that the only solution of

A _ - _ _ = 0 is at the origin of _, _). If this is the case then e_ (6) does

not restrict _ to seml-definitenesso It seems plausible to inquire whether this

0

requirement is sufficient to yield a definite V. Lefshetz [P_] shows that this

is the case and focuses attention on what conditions guarantee that the only

solution of A _ - _ _ = 0 is the trivial solution. He obtains the requirement
t -i

that _ A b _ 0 and proves the following theorem.

t t -i t -i

Theorem If _ _ C _, C is positive definite and _ A _--- O, then the system

(I) is absolutely stable.

The treatment given below follows that of Aizerman and Gantmacher 4 . ]in

order to avoid the difficulty discussed above add and subtract _@(_) to (5) uhen

-v = S(x,q) + (7)

Where

t

Where use has been made of the facts @ = @* and c

that V will be negative definite if S_, _) is positive definite.

t t t t

= c + q*C + (R-l iq
2 2

t

t
x = x c. It is clear

Furthermore

(B)

requiring S(_, @) be positive definite as a hermitlon form in the N + I variables

_, _) does not lead to a contradiction. Following closely to reference L4]

t _t
we consider two cases separately. These being r = _ _ _2 0 and _ = c _ = O.
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t

r=_ _ > 0

is-_tApproach: Note that equation (8) can be written

t
s_, _) = _, q) C

2

_-!_t2__) )

Which is positive definite if C is positive definite and the Lefshetz

inequality

t t I

2 2

holds.

The simplest way to insure (9) is to require d---! _ = O.

2

)

(9)

_Approach:
t

u

Noting that c b > 0 add and subtract the quantity

I
t t 2 t t

i _ _ i " i
cb

to s(x, _)

S(x, _) = _ _ + _ _-! =)
-t- 2

cb

2

t
+_Cx -

t t

_t_ 2 2
cb

In order that S(x, _) be positive definite it is necessary and sufficient that

t t t

_t_ 2 2
cb

(lO)

(II)

be positive definite.
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Nowconsider a system in Lure's first canonical form, i. e.,

A = diag(2kl, ..., )kn)

_k

-0( 2

-i

-I

-i

and choose

t
C = _ _ + diag(Al,...,An)

then
9¢

B = - _.i_k + diag __!, .... Ann)

* 2M I 2MnAj +Ak

where _[i = Re Ai < 0

and

t

(3-! _)k-- (B _ - ! A c - ! c)k
2 2 2

n

I , 9¢ ,= _1_k A k + AkC_k + C_k

j=l A_+Xk 2M k 2 --Y-

Eq(ll) can be written

t

Q(x) = _ diag(Al,..o,An_

_t_ 2 2
c b

(12)

With A i > 0 we can insure a positive definite Q(x) by choosing the elements of

so that

(13)



I

I

I

[

i

I

I

t

- 19 -

Hence we have the n equations

n _ . ._-- _ _k A k + _kO_k + c_ k , k = 1,2,...,n

= j=l _+_ 2_ k 2 2

or since Ak is an arbitrary positive constant we require only that the _k satisfy

Ok _ j + ak=t + ___k _ = _ _k > 0
2 2

j=l _ +Xk (14)

These are 'Lur$e's resolving prelimit equations'.

t
r = E g = 0

In this case e_ (8) becomes

t [s C_, _) =_ C _ + _* Ca-! _)t
2

t

2

which is positive definite in _, _) if C is positive definite and we require

a -! c = o
2

(15)

Returning to the case of a system in the Lur'e first canonical form (15) leads to

n * w *

_ j_k A k + AkC_k + CX, k = 0 K =I,2,°0,,U

or

n * * *

_j + _kO(k + Okk _ O, k = 1,2,...,n
_k__ I_- *+ 2 --2"-

j k
t

These are the 'prelimit' equations for the _ b = 0 case. Note e_b. (16) are

contained in (14) although the two systems are obtained in different fashions.

(16)

Hence we can refer to (14) as the 'prelimit' equations in both cases, The so-

called 'limit' equations are

j=l * 2 2
Kj + _k

k = 1,2,...,n

0 (17)
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Example: _21 We consider here the problem of an indirect control system with a

second order plant. The control system under consideration is illustrated in

fig.(1).

(s-k l_(s->_)

fig(l)

C

_.tree cases are considered;2kl, A, 2 real and distinct,_kl,_,2 real and equal,

_kl,Tk 2 complex.

CASE I - real roots; _I = "MI _- O, _k2 = - M2 _ 0

The diagram of fig_l) can be redrawn as shown in fig. (2)

The Squations of motion are

fig(2)

_i =" MlXl +

_2 =" X2x2 +

0" = ClX 1 + c2x 2 -/0_

(l)



Where

- 21 -

MI -M2

2
C2 = PM2 - PIM2 + P2

-M i +M2

Choose

CC 1
Since we require C _ O we must have

p _O, pr-q 2 _ 0

Then we know

W-here

0

P q r
_ _ r O

Po = _ qo -- MI + M2 ='_

As sufficient conditions for absolute stability we shall require

= Bb-lc = O

2

Note: We have expressly indicated that (4) is a sufficient condition if

p > O. This is also true if p = O.

Eq.(4) yields

Po + qo + i cI = O'
2

qo + ro + ! c2 = O
2

Inequalities (2) are equivalent to

Po "> O, Po ro -6qo 2 _ 0

(2)

tq_

(4)

(5)

(6)
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6 = (MI + M2)2

4M 1 M 2

Using (5) to eliminate Po and ro from (6) we obtain

2
g(qo) = (_- 1) qo -1 (Cl + c2) qo -1

2 4
ClC 2 < 0

qo < -! Cl
2

The discrlmi_mtof g(qo _ is

,(eI - c2) 2 + 4. ClC2

Since 6 > O, the parabola g(qo) = 0 is concave upward. Rence if ___ 0

inequality (7a) has no solution and we cannot demonstrate absolute stability

by this method. If _ _ 0 then g(qo) = 0 has two distinct real roots ql, q2

and we can satisfy (7_) by selecting qo in the interval (ql , q2) ° Inequality

(7b) must also be satisfied. Note that

g(- ! Cl) =
2

Then - i C 1 is not in the interval (ql, q2)"

2

fulfilled only if I (ql + q2) < - _i Cl, or
2 2

2

6 c-1 7 o
4

Hence qo _ " !
2

cI can be

- i cI Cl + c2

4( - l)

or finally

and

(26-1) cI < -

(cI - c2) 2 +

c2

4 g ClC2 _ 0

(7a)

(7b)

(8a)

(8b)
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CASE II - real roots;)t I =_2 = =-M <_ O

In this case fig.(1) can be redrawn as shown in fig.(3)o

<

__+_M Xl

_-I PI'2PM

P2 -Pl M+P_

The equations of motion are

Where

Choose

For C > O we require

Since C _ O, B 70o If

the relationship between p , q

I° )qoo ro i

+

ffgo(3)

x I =- MIX I +

e

x 2 = xI - M.x 2

(3- = ClXl + c2x2 - P ¢

c! = 2PM - P!

c2 = MPI -P2 -PM2

C

2
p > 0 and pr-q _ 0

B

(po )
qo

qo ro

r

I:l)(o%1-M qo ' r

and p, q, r is obtained from

P

q

(9)

(zo)
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Which yields

2(PoM - qo) = p, (2qo M -ro_ = q, 2 ro M = r

In view of the second Inequality of (I0) the first can be replaced

(II)

by r > 0. Hence using (II) inequalities (IO) can be replaced by

4ro M(p o M - qo) - (2qo M - ro)2 _ O, ro > O (12)

Again e4.(4) is taken as the required sufficient condition for absolute

stability. Substitution into (4) leads to

Po = ! Cl
2

(13)

qo = ! c2
2

Substitution of (13) into (12) yields

g(ro) = r2 -2 M (clM _ c2)ro + (c 2 M2 -2 c 2 M) < 0

ro > 0

(14a)

(14b)

The discrimlnat of g(ro) = 0 is

= 4 Cl2 M 4 - 8c 1 c2 M3 - 8 ¢2M

If S _ O, inequality (14a) has no solution. If _ 0 then g(r o) has two

distinct real roots rI , r2 and (14a) can be satisfied by selecting ro in

the interval (rl, r2). Inequality (14b) must also be satisfied note that

g(O) = C_ M 2 - 2C2 M. If C_ M2-2C2 M _ O then (14b) can clearly be satisfied.

2 2

On the other hand if C2 M - 2C2 M >__ 0 we must also require _ (rI + r2) > O
2

or M(C I M - C2) Y O. Hence, we have demonstrated absolute stability if

2 3 2
C1 M - 2C1C 2 M - 2C2 > 0

and (15)

C2 (C2M - 2) < 0 or CIM - C2 > 0

I

!
i
l

I
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CASE III. Complex roots;_k, 2k , 2_ =- M + iV, M > 0.

In this case fig. (I) may be redrawn as in fig. (4).

"l P

2

P 2_ +PITk+P 2

-A*

The equations of motion are

x =;kx +#

Cr = c_ x + c Ix* -p_

where

I

I

I

I

p_2 + PI 7k + P2

Choose a positive definite hermitianmatrix

C = (P
q.

C_ > 0 we requireFor

p >

1
0, pr-qq* > 0

p_ r real

(16)

(17)

II •
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If

we have

B= 12 ( POqo, -)r o

P , = q

Po M qo= M+iv
, rK) = r

M

Eq.(4) yields

Po + qo + CI = O

ro + qo + Cl = O

Note that these equations imply ro = Po* = Po Also using the first equation

we have

P = MPo =-M(Cl + qo_

Inequalities (17) can then be rewritten in terms of qo

Noting that cI + qo

2 2 2 2

M (cI + qo) - (M + V ) qoq% > O l
Cl + qo < O I

J
mmst be real we can write

c I = o_ + iB, qo =_-iB

Also, setting _ = V2/M2 ' (19) can be written

2 . ,_2h(c_) = o_ + 2 _ok - (I+_)B2 _ > O

oc+ , <, 0

Let_K landmK2be the roots of h(ok).

opposite sign. Take O_ I< O, =_2> O then to satisfy (2Oa) we must have

o_o_ I or o_. Now h(-_) _ O. Hence - _ is between the roots°

to satisfy (20b) we must choose _ such that

Since o_lOk2_O the roots are real and of

Then

(18)

(19)

(20a)

(20b)

< c_,1 (21)
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If this is done then this procedure guarantees absolute stability.

Clearly, it is not always possible to satisfy (21). In fact it is readily

found that nmximumO<,lOCCUrS when _ =-MM__B and takes the value
V

(22)

which is less than zero. Consider the case where p, Pl = 0. Then

C I = o<+ iB = i P2

2_

SO that O< = 0 and (21) cannot be satisfied in view of (22). Suppose only

p = O, then

CI _Fo<+ iB =- PI -- [ (PZ -PI M)

T 2V

Substituting into (21) and (22) we require

- PI P2 - PIM

T Z.. 2M

....... e-'-_ P2 > O.

Example:

We consider here a system described by the equations

0d •

_" : il(0r')
"0 2 • o

_: _+ _ + o _

where T 2 characterizes the inertia of the regulated object and _, E, G2,

'The Second Bulgakov Problem', References [_2Chapt. 2, par. 5] ,

and _ are constants of the regulator and U and K are positive constants.

Now, _ is eliminated from the last equation using the first

: (c - KG2_I + (_._ G2U)-_-('I _O2)_- (2)

(1)



Defining the phase

or
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xI = _, x2 =_ we obtain using (i) and (2)

xI = x2

X2 =- K
_ Xl x2 +_

8

_=

0_ = (_ - KG 2 )x I + ( E - G_ ) x2

_= _(_)
t

_= _x I + _2x2 -p# = z _ -p@

°_I=T_ ,o<2= U 2

- 1

A_ -_#

G2)

(3)

(4)

= , = iG2 = G2_'i _- KG_2 F2 E- U , 19 I

T 2 -'-2-T

Noting that c_ I and c<2 are positive it is seen that the roots of the characteristic

equation

A.2+ _ IA,+ o< 2 = 0

have negative real parts and hence A is stable. Let B and C be given by

o r

We know that B 0 if C > O and the conditions that C > 0 are

(s)



- 29 -

The relationship between the elements of B and C is given by Liapunov's matrix

equation

t
A B + BA =-C

p -2_2qo po-_lqo-_<2roI : - [p
o "_<lqo - tK2ro 2(go -P_iro ) / _ q

or P = 2°<2 qo

q = o< lqo + GK2ro - Po

r = 2(o_1 - ro "%)

We have absolute stability if

_t-I
-%-

P>d c a 3 0 = .I_D - 1 C

2

Choosing as sufficient conditions for absolute stability c_ = 0 and p_ 0

we have

<_ =" (qOro + i _iII

= 0

+ i _2 _

and from (6)

qo = ._p__, ro = r + p
2°(2 2=<1 2 °<ICK 2

so that we require

p +0<2_ I = O

P + r°(2 +tXl_2 _ 2 = O

Also, from the /o > O condition we require

! > G2

(6)

(8)

(9)
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Noting the first relation of (5) the first equation in (8) yields

_i < 0

Eliminating p between the two equations in (8)

r : _I-°_i _2

and noting that the second equation in (5) requires r > 0 we have

_i >oc l_2(note this implies _L_O)

In terms of the initial constants the sufficient conditions for absolute

stability ((9), (I0) and (!I)) are

i > G 2

%

G2 U

E<- 7

(io)

(ii)

(12)

o < _G2 u .(G2U E_
T 2 _ < _ T 2

Example; Gibson and Rekaslus _6]

Consider the closed loop system shown in fig.(1) where the nonlinear

element is a saturating amplifier

? s (s+l((s+2)

r_

fig. (i)
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This system can be treated as an indirect control system and can be put in canonical

form by redrawing as in fog. (2)_

q ¢

Y2

fig.(2)

We have then

y = f-o ot y_ /-_.

to t-J
¢ --
0-" = (-i, I) y

We would like to use Lur'e's theorem to demonstrate absolute stability.

case the 'limit' equations are

2

-_ i " 1_1_2 + 1 = 0
3 2

In this

- l_lA2- z_2 1 : o

Since the _ are real we look for a real solution to these e_s.

ously we find

Solving s in_itane-

_. =- ,,4_" - J

Hence we have failed to show absolute stability. Since l_'e's theorem gives only

sufficient conditions we cannot conclude that the system is not absolutely stable.

However, note that in order to be classified as absolutely stable the system must
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by globally asymptotically stable for all admissable characteristics _ and a

function _ is admissible if it satisf!_._ the _.i_ree eoEdltio__s

o fo.-:0" o

+--_ _,(ry ,__ diverges

o

Hence the linear characteristic _ = K_ for 0 < K _ oo is admissable. We know

that with the linear c.haracteristic, for sufficiently large K the system becomes

Hence, we will not be able to de moth-;Irate absolute _tability by any

,(o-") I o"
5. Restriction of _(O _) to Fi_n_tene_s of the Ratio

It has been seen that the useful_ess of the presee:ted sufficient conditions

. _ ._for absolute stability are se'_erly l_3_i:.ed b2 _._,efact tha_ many control systems

are only conditionally stable, i.eo, with _ = K0 _ they are stable only within

some range of K. This reglo:_ of K is readily found by techniques of linear

analysis. Since _((_) = KG _ is an admissable characteristic for 0 _ K < _

in our present formulation, we require that the system be asymptotically stable

for all 0 < K < _in order to be classified as absolutely stable. Hence we

obviously rule out a large class of _ys_e_s of interest.

We attempt to correct thi3 dlffi:_ulty to some extent by restricting the

class of admissable characterics _(_-) to those contained completely in the

sector of the _-O" plane between the lines _ = 0 and _ = KO'o In other words

the condftion(_-_(G-) > 0, _ 0 is replaced by 0 < Q(0") < K. Our attention
O-

is being directed toward systems which are stable for linear characteristics with

slope less than Ko The value of K can be determined by linear methods.

J
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The approach taken is to select V positive definite for all_ and_ (x in the

8

direct control case) as before but to require -V (S(x,_)i in the direct control

case) to be positive definite only for a function _ contained in the sector l 0, K_ .

We consider the direct and indirect control cases separately.

Indirect Control - The system of equations we have been using to describe an indirect

control system _

_= g y-p
O

(l)

It is more convenient here to work with the e_s. in a somewhat different form.

We define the new variables

@

_ =_=A_-'_ (2)

Then (I) becomes

D

= q(cr) (3)

t -I t -i t

O" =c--o A : + c'-o A 1_. -p_" =: :-_

t t -I t -I

where : = C--oA , _ = _- :o A

We choose a slightly different form for the Liapunov function

t t t

v(_, )= : B: +_(_-_ x-)(=-: :) + _ _ (¢)
t t t

where _ and _ are positive constants. Note that (_ _ x_(O" -_ c) = _-_ x

The modification of V is to enable us to obtain a convenient form for Vo

(4)

2

Differentiating (4)
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• ,_t t _ t t

t t

t t t t

t t

- =_(:-: 7) - _(_-7 _)

t
+ _ _Ce A : - p _)

• t t t

-v =: C : + (_ B- =_-B
t t

"_ A_: _ + _ x"

+ 2 _,_ _(_ + B/O Q2

(B _ - o(,_c--_{

t t t
=_ C _ + (B E - =_ - 1 B A _)

2

t t

2

+ 2_ + B/_ _2
t

where -_ = A B + B A

t
and we have used the fact that _ A

t t
m

= x A c. Now, add and subtract the

quantity 2 _ _ (0" - _) _(_I')
K

(_p+ 2=_ _ _2]
K

t "%"__._((_'- _) _(O')

where _o = B b -w_c- i A C K
2

We consider the case where _ _ O, then since the last term is positive if and

only if @ < K_'we have a -_ which is positive definite in the desired

sector of the _ -(Y" plane if the term in brackets is positive definite.

(5)
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first approach - Eqo(5) can be rewritten

t

From which it is seen that -V is positi_e definite in the sector _O, k] if

C > O and the following Lefshetz inequality holds

2_ t -i

_p+ K >_oC _o

Hence these are sufficient conditions for absolute stability.

(6)

(7)

second approach - This is essentially a generalization of Lur'e's theorem. We

t t _t

positive definite with respect to (_,_'). Take

(_p + _ _2
K

C

t
m

=_ + diag (AI , ''', An) (8)

then

t

P(x,_') = x

t t

diag(A I , ..., An) x + x _ _ x

...t _ _t 2,=,_ q2+ _doX + x Jo _ + (/_P + )

J_p 2=k_ 'Add and subtract + K

t

P(x,_) = x

_t _t --

(x _ + _ _) to P(l,(r)

t t

+ _<_o-j_p + 2.<_'E) _ + _ _ _o -V_ +
K

2_ '_ _ )
K
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K

(9)

or

t

B _-_c - ! A c v_p+ 2 c_'' Zt = 0
2 K

Hence with A i _ 0 if we can select a set of _i i = I, ooo, n which satisfy

(IO) the system is absolutely stable in the sector IO, k_ .

(lO)

Direct Control - Consider a direct control system described by the equations

x = A x - b _ (O')

t

_r= c x

t t
o m

Cr = c A x - c b _(0")

(II)

Take as the Liapunov function

t

v(x) = x B x + /3 _(O')

Then

• _t _ _t _ _t
-V -- x _ x + b B x _ + x B b

t t

- _9 _ (c A x -c b 4)

t t t t t

= x C x +(b B - i _ c A)x @ + _ x (B b - i_ A c)

2 2

t 2

+ /_ c b Q

_t t t t 2

= x C x +c_ x _ + @ x c/ + _ c b (12)

t t

where e/ = B b - ! /3 A c , - _ = A B + B A
2

Add and subtract the quantity (_- _ _(_) to -V

K

C x + c )x + (a-! c)
2 2

_t_ 2

+ (_ c b + !)@ + (q- R)
K K
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Then -V is positive definite in the sector[O, K] if we make the quantity

_t_ 2

+(_ c b + I)

K

positive definite in _, _).

t

Consider the case r = _ c b + I > 0

K

first approach - rewrite (13) in the form

S(x, q) = (x, _)

_t

(&-! c)
2

- 1 C X

2

t rn

which is positive definite if _ > 0 and the following Lefshetz inequality holds

t t -i

7) 7)c b + _i _ (d- I (_- I

K 2 2

Note the si_--p!est way to insure (15) is to require

d- i c = 0
2

second app,roach- add and subtract the quantity

t t

1 x (_-i c)(4-i c) x
r 2 2

I

to S(x, @). Then

t

_ a

2 t

+ x _ x

t

- i x

r

t

(_-i c)(d-i c) x
2 2

(13)

(14)

(15)
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m

To make S(x, _) positive definite we need make

t t

q(x) = x C x - ! x (_-!
r 2

c)(d
t

-! c)
2

x (16)

positive definite•

t

Take C = a + diag (AI, .o., An)

then Q(_) can be written

Q(x) = x diag (A I ,...,An)+ x - I (cA- i
r 2

c)(g- ! _) x
2

with A L _ O we insure Q(_) positive definite by select the elements of _ so that

(_- i c) = _ (17)
r 2

or

t i ti + /_ c b _ = d- i c = B b - i /3 A c - I
2 2 2

c (18)

Let the system (ii) be in Lur'e's first canonical form so that

A = diag (AI,...,/_ n )

c = -_i

-°( n
4

B =-I_J _ k.i + dlag( --A1 ,...,
* +A ) 2MAj k 1

The (18) can be written as the n scalar equations

n

-I

o

-i
4 w

-Mi = Re/'Xi < o

'n

Z . . .

J=l *

Aj +A k 2 2

+/_=_ Ak - o

k = 1, 2, ..., n (19)
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which are the 'prelimit' equations°

The 'limit'equations are obtained by setting A i = 0

_k n , * * _ t /_j + _kCKk + CKk_ _ i + _ c b

j=l _ +_k 2 2

t
m

For the case r = I +/3 c b

K

k = 0

K = i, 2, .o., n

N I

= 0 we need only set d - 1/2 c = 0 to make

S(x, Q) positive definite. The resultant equations are the same as (19) and (20)

when r is set equal to zero. Hence (19) and (20) hold for both cases.

Example; We return now to the problem considered previously

G(S) = 1
S(S + _)(S + 2)

@

0_= (-i, l) y

0

-2

Y _

It is easily verified that for a linear characteristic the maximum allowable K for

stability is K = 6. We wish to examine the system for absolute stability in the

sector [0, K] . Sufficient conditions are that it be possible to select real _i

(the realness of _ i is imposed since the h i in this case are real) which satisfy

_ t_ = 0B % -_c - ! A c- -T
2

Now

_t _t -I

c = co A = (-i, i)

_= O, _ = -(I,-I/2)

-I 0 1 = (I, - 1/2)

)O - 1/2

(20)
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Hence we must satisfy the relations

2

ick2 A I o_[ + i

2 3 2 2 2

= 0

_i_2 9 2- 2 A 2 + ok i

3 4 4 4 2

or since the only restriction on the A i is that that be greater than zero, the

ai must satisfy the inequalities

2
i _I_2 o< + i

2 3 2 2

2

_I_2 $2 + c_
3 4 4 2 _2 70

Select = i, then

2

2 3

2

_I_2 _ 2 1
3 4 4

_i> 0

or

_2 <- 3_I - 3

_2 >--3_I- 3

2

for _I > 0

.for._i < 0

3_ 3

-
for_2 • 0

1 >.. 3_--2__---.3_---3 .--_r _2 < 0

4 _4_2
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The region of allowable values of (_ I,_2) is shownin fig. (i)

-3 f

K

_2

_egioL_ of allowable points.

Clearly the region vanishes as K _ o_ the limiting case being where @ is

tangent to IQ_. To find this value of K we solve the relations

_2 =- 3 _i 3

2

91 =- 2 2_3 3
4 _ 4 _-'_2

simultaneously for _ 2which yields

12 + f144 '

- V _ 36

2

the limiting case occurs when the discriminant vanishes hence

K = 4
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Wehave demonstrated absolute stability in the sector [O, 4_ . Howeverwe have

said nothing about other values of K since the procedure used involves only

sufficient conditions. In particular it is possible that the sector could be

enlarged by choosing _other than O_= i_

6. The Problem of Aizerman

The discussion of the last section raises an interesting question. Suppose

the nonlinear characteristic _(O') is replaced by a linear _(O') = KO" and

the system is found, by means of linear analysis, to be stable for_< K< _. Can

we conclude that the system is asymptotically stable in the large for _ contained

within the lines _ = _,_ , _ = B O-? In other words, can we conclude that the

system is absolutely stable for _ contained in the sector l_,_] ?

This question was originally posed by Aizerman with regard to a specific system

of equations° This system being

x = A x - b _(xj) (i)

where b has only one nonzero element and J is any integer between i and no

Aizerman originally conjectured that the question would have an affirmative

answer. However, it has been shown that this is not the case° Aizerman's problem

has received nmch attention, however, the only complete results are available for

n = 2. In this instance the problem has an affirmative answer except for an exception-

al case. For n ___ 3 additional conditions must be imposed. Aizerman's problem

for n = 2 takes the form

or

= f(x) + b y, y = c x + d y (2)

= _:x + f(y), y = c x + d y (3)

E qs. (2) were originally treated by Erugin 17] and Malkin [8] and _s. (3) by

Malkin [8] . Malkin's treatment of the problem is repeated in Hahn [9].
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Krasovskii [I0 3 considers a more general problem with n = 2 and having two

nonlinearities° Since this problem has Aizerman's problem as a subclass,

Krasovskii's treatment will be given here. A system of two equations with two

nonlinear functions will appear in one of the following forms

x = fl(x_ + b y , _ = f2 (x) + d y

x = fl(x)+ b y , y = c x + f2(Y)

x = fl(x) + f2(Y), Y = C x + d y

x = a x + fl(Y), Y = f2(x) + d y

We consider system (41 first° If fi(x) is replaced by hlx and f2(x)Case i.

we obtain the corresponding linear system

= h I x + b y, y = h2 x + d y

which is stable provided the Routh-l{urwitz conditions

h I + d < O, d h I - b h 2 _ 0

are satisfied. Hence we postulate the conditions

+ c,_<. O, a fl(x) _b _ "_,0 for x _ 0
x X x

and inquire into the absolute stability of (41, i.e. are conditions (i0)

sufficient to guarantee the absolute stability of (4)?

Krasovskii considers the Liapunov function

v(x, y) = (d x-by) 2 f x

which is seen to be positive definite, if b _ O, by virtue of the second

inequality of (i0). Note that if b = O, the variables of (4) are separated

and the system can be integrated directly. This case is not treated here.

Also note that v(x, y) _ _ if x 2 + y2 _ _o Differentiating (i0)

with respect to t and using (4)

(4)

(5)

(6)

(7)

(8)

(9)

(io)

(tl)
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= 2 (d x - b y)(d _ - b 9) + 2 (d fl (x) - b f2Cx))

= 2 (d x - b y)Cd fl " b f2_ + 2 (d fl " b f2_(fl + b y)

= 2 (fl(x) + d x)(d fl(x) - b f2(x))

• •

So that V(x, y) < 0 for x _ 0 and _(x, y) = 0 for x = 0 and hence V(x, y) is

negative seml-defimite. Moreover, since dX/dt _ 0 for y _ 0 the conditions

of theorem 5.are satisfied and we have absolute stability.

Note that if only one of the functions fl(x) or fl(x_ is nonlinear then the

problem treated is equivalent to e_s_ (2) or (3), i.e_, to Aizerman's problem

for n = _.

Krasovskii [1.0] points out that similar methods lead to the following results

for egs. (5), (6) and (7).

(12)

Case 2. Consider e@So (5). The conditions

+ f2(y) _ O, _ _ _ b c _ 0 for x, y _ 0
x y x y

are sufficient for absolute stability. Here the Liapunov function is taken _

V(x_ y) = ! _2 - b c) x2 + ! (b2 - .____cc)b3

2 2 _2

2

f2(_)c"_'_ -b _ x y

Case 3. Consider e_s. (6)° In this case the stronger form of the conditions

corresponding to the Routh-Hurwitz inequalities

+d__- _<o, _ - f2_/Iz)_c >__ _> o
x x y

for x, y _ 0

are not even sufficient to guarantee asymptotic stability in the small. However,

(13)

(14)
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the additional hypothesis that

fl(x) + b x is a monotonically decreasing

function of x, or in particular

!

fl (x) + b _.. O

along with (13) guarantees absolute stability° The proof is based on the

Liapunov function

2 fyV(x, y) = ! ' x
2

fl¢- _bt ) - f2<t

Case 4. Consider e_s. (_). Here the conditions

_ + d _. O, d- fl_x) f2(v) _ 0 for x, y _ O
V

guarantee absolute stability.

Ex&j_ple io LII_ Bergen and Williams have verified Aizerman's conjecture for the

class of third order control systems illustrated in fig.(1) o

-I (S+)%])(S+X2)(S+7_3) [

Gl(S>

(i5)

(16)

fig.(1)

This system is described by the differential equation

coo

O_-:- (_i +_2 +A3)_ + (_I_2 + 2kl _3+_2_3)O _ +_i_ 2 _3C_"

+ _(0-) = o

If the nonlinear characteristic @(0 _) is replaced by the linear characteristic

= KO _, the linear system is found to be stable for

K I < K < K 2

where KI =_7kI_2)_3

K2 = ( _i +_ 2+_3)(XI_2+A2_3+)_I_3)-_ I _2 _ 3

(1)

(2)
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We wish to demonstrate the absolute stability of the system under the hypothesis

that

KI< _ <, K2 for 0"_ 0
O" (3)

and @(0> = 0

The system is successively transformed via the diagrams in figo<2)o

S

s' c2(s)

I N 6S+ l)(S+ 2)(S+
I I _ ....
]

j=======_

2 L22J __J

u

(a)

G2(s)

.....(S+jB) (S-jB) (S+c_

(b)

xI

x2

C

fig. (2) (C)

C

t
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where
h_<_> = f(_ ) " K2°"

= -I ,_ 2 =

c_ = S I + S2 + $3

=Ssls2 + s2 s3 + s3 sl
I

Now e@. (2) can be written as the first, order system

= A _i + _ h(_)

where

w

b =

11i

I

_t -- _t _

O':-a x :-x

A
0

JB

\u 0 --I

Since _ satisfies (3) we have

2 : kl -k 2 < _ < O
for _o

h(O) : 0

Choose as a candidate for a Liapunov function

with B =

f_- -- h_Ns

o

io il0 1

0 0

<4)

!

(6)

<7>

(s)
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where p> O and _" are to be determZ,nedo
t

noting that 7_ b = O we obtain°

o t t

t

+ _ (-B

Diffe_entlati_g (8), using (6) and

t

2

t

+ I. rA _)
:2

Now defina the f_.-_.c'ti.ong(G"_) by

so that

2
for 0"# 0

and

The_-_$' can. be writ__en

J. { t tB + B A!I +g _'b B - !, _'_ _ A):_+(iB b
2 2

Since -:_ is ll:_.ear in g((Y,_ we _eed only._ i_sure that -_ l.s posi_.ive sem.._.def_ ......._,_[_e at

the ex_rem.e values of g(ff ) to be _:::erta!.nt:hat -_ Is post.tire se_idefi_i'_e For all

intermediate values°

_i = Qo for (3- =

Deslgvatlng t_e matrix in (9) by Q we _,ave for, g_'G") = 0

0

q3 q3 q4/

f O _: [11},
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ql = _3

q2 :-_2 <2 - j _'A 2B)

2

= -E3c4[2 c_ _q4

Matrix Qo is clearly positive semideflniteo,. Matrix QI is positi:_e semidefinite

if the following co:_.dltions a_e satisfied

•'.: ql > 0

2} q4 _- O

3) q2 - q,_ q2 >-- 0

-,':"*I,'_4 _3 _3 "--

Condition 1) :t8 satisf:/ed Cond,_t._.on 3) is satisfied :if

-F 2 + 8_'=_ -

which is satisfied _w.,._..,_ the equality sign if

Using ( _ _ ......._42 _nd.t._....on J_ becomes

16_2 >__o

(12)

(13>

(14>

2
-p + 4#- 4>_ o

which is satisfied w:[th the equali.ty sign if

P = 2

Using (1.4) and (16> conditions (12> and (5_ are satisfied.

positive semidefi.nite for

if (14) and (],6} hold.

f

Hence -V is

::1.5 }

,16_

(17)
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It is readily shown that V_) is positive definite.

t 22 2 tr 2

V_) >__ _ B _ - 2 ok_0" = _ _B - 2 o< _

From (4) and (8)

2

2 2 t
=2c_Z x H x (18)

where

H : /h I h2 h3 _ =

h* h h*;2 I 3

h_ h 3 h 4

1
2 2

2_

h I = I
22

2m_

_ _ l_2

h 2 = . c-_2

h 3 = -_i_3 l

h4 = i _ 23

H is positive definite if and only if

l) hI > 0

>o

3) I_1 > o

These conditi6ns,are satisfied. Note also, that since }{ is positive definite

v(_) _ o_ as II _ II _ oo

In order to satisfy the conditions of theorem 5, it must also be shown that the

surface

t

F(I) =-VG)= _ q _ = 0

contains no nontrlvial half trajectory

_O' to' t) 0 <t _

of the system.

(19)

(20)
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8

In order to investigate the nature of the surface (20), -V is written in the

-V = _ (A b + B A) _ + g O_2 Re ( - B _ + i AT )

2

= 4ok 2 x 2 + g{O"2 Re I (-%-2Ok_lj/8) x I + (-I + 2_* jl B_i_x2

+ 2(-I-_k2)_3x3]_

Viewing -V as a linear function of g and having shown that -V is non-

negative at the end points of the permissable domain of g -V can vanish

in this domain if and only if

X3 = 0 (21)

and

L
x I) + (-,_ )x2- _

J

= o (b)

where in the last condition we have substi_ted for _t using (5) and have made

use of the fact that x 3 = Oo Also, since X2 =
condition (b) leads to

the relation

x I =__C_-_ x2

t

But direct substitution of_(21) and (22) into O" = - ,_k x

and hence condition (_)e,ls a _ecessary consequence of (b)o

shows that O-vanishes

The converse is also

(22)

true, that is (3"= O insures condition (b)o Hence the two are equivalent and

we can say that -V = 0 if and only if x 3 = 0 and _= O. Thus if a solution

is to remain on this surface it mmst satisfy (from (6))

x I = " iBx I , x2 = iBx 2, _iXl +al* x2

i.e., there must be a constant such that

-iBt iBt

e e = o

= 0
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Since the exponentiala are linearly independent and_i _ O, we require _ = O.

Hence all of the required conditions are satisfied and the system of fig.(1)

is absolutely stable for admissable _.

7. Some Theorems of Popov

Indirect Control - Popov t12] consider_ a system in the form

_ = A _ - b _ (O_ )

t

This representation of an indirect control system is equivalent to those we have

used previously. To see this, the last equation of (i) is differentiated and we

• t

O" = : A : - p _(0")

t

Let A s = sl - A'so that IAs = 0 is the characteristic equation
l

of A_ Also, let A be stable, "i.e., its eigenvalues have negative real parts.

The iw I _ 0 for all w and hence Aiw exists°

The scalar function_J(t) is defined, by

t At
_(t) = _ _

The _urier transform off(t} is
{

oo

N(jw) = V(t)

-iwt

dt

o@o0

= e d 'b = -c A[_ e J
o

(i)

b

(2)

(3)
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-I

NOW, there is a similarity transformation such that A = S A o S

Jordan normal form.

where A o is

Then

o o

So that

t -I

N(jw) = c Aiw b

In addition introduces the function

G(jw) = N(jw) +

jw

It is readily shown that G(s) is actually the transfer fdnction of the linear

part of the system. Taking the Laplace transform of (2)

S x (S_ = A x (S) - b _ (_)

t

s o'(s_ =_ A :(s_ - p_(S)

from the first equation we have

-i

(S) = - A
S

_s_

Then from the second equation

t -I
m

so-(s) =- c A As

i -i= _it %)As 1:+p] Q<s)

t -i t= - SAs 1:-_ I: +_] _(s)

o'(s) = r_[t As _ + P-f : ] _(S)
S

O'(S) = -I: t A: I -b + ____
S

Q(s) = - c(s) _(s)i

From (7) it is seen that G(S) is the transfer function between @ and -0_as it was

desired to show.

(4)

(5)

(6)

(7)
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We state the following two theorems of Popov:

First Theorem of Popov - A sufficient condition for the absolute stability of

system (I) is that for some nonnegative number q and all real w we have

Re_ (i + iwq) G(iw)_ _ O

Second Theorem of Popov - If the absolute stability of the system (i) may be

determined by means of a Liapunov function V(x, _ )of the form "quadratic in

x, plus _(ff _ dff " then there exists a q _ O such that (8) holds.

o

Note that the second theorem implies that satisfaction of the first theorem

is necessary if the criterion of the previous sections are satisfied and hence

the first theorem can be considered a broader sufficient condition than those

obtained previously.

There is an interesting geometric interpretation of the criterion of Popov's

first theorem. Let

u(w) = Re G(jw)

and v(w) = wlm G(jw)

Then the locus of points (u,v) in the plane of (u,v) is called the 'modified

frequency response' _r 'modified phase-amplitude characteristlc"(M.P.A.C.)

We have from the theorem

u(w) + q v(w) _-- O, q _ 0

Hence, if there is a straight line situated either in the first and the third

quadrants of the (u, v) plane or it is on the coordinate axis, an in addition

it is such that the MoP.A. Cn is "on the right" of this straight line, then

the origin of the investigated system is absolutely stable.

(8)

(9)
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/ M. PAC

figo(1)

Proof of ;:Be __:_O theorem, can be found in [2_[4] or [ 2]-

The Liapunov Function of Popov .e

The general form of the Liapunov function mentioned in the second theorem

is (see [_ p 98] and [4, po 36] _

t 2 t

v(_,_)= _ B _ +c_Cr +_Y _ +13_(_)

which may also be written in the form

t t t t

v(_,_)= _ B _ +=(_-_ _)(_ _ _)+ _"(_)+Cq

We will now show that to have -V at least positive semldefinite we nmst have

Differentiating (2)

t t 2 t t

-V = x (-A B-B A) x + _ @ + x (B b - c*_ c- ! B A c)@
2

t t
m u

+@(B b - c_c-i B A c) x + 2c_b_O- Q

_, 2

_t

(1)

(2)

?
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_t _ _t

+x ao_ +_o
R

x + 2¢K _'(y _

t

_ a__ (_f xJ
air

(3)

where

t

= B b- (! B A c + _'c)no
2

-C = At B + B A

Also,

t _t t t t

(0" _ x)= (x A c-/O@)f x + 0"f (A x- b @)

_t
• m

Since -V is to be at least positive semldefinite in (x,_) we can choose an

arbitrary small number _ and -V must be nonnegatlve when we make the transforma-

tion.

2

x --_ £ x, _--_o", _ ---_ _ _

(clearly, if @ is an admissable function _z@ is also admissable_. We obtain

t

V =- fax + O( )

Now A is nonslngular and hence for _ 0 and f _ O, _ and x arbitrary, we have

t

_'f A x _ 0. Moreover, for small E the sign of V will depend on the

arbitrary sign of _. Hence we must have f = Oo

Then finally we have the most general Liapunov function of the form "quadratic

in (x,O')plus /_/% (_') #/C_"

o

t t t
V=x B E + 0<(0--_ x-D(_-_ _)

t 2
-_ =_C_

_ (o-)+ (4)

t t
+ /3/0 _ + Xclo _ +_ o _ _ + 2 _,_" _ (5)

Furthermore, for V to be positive definite we require besides B > 0;=_>_. O,

/3>_ 0,=_+ /3>0
2 2

Let _ O, the substitution _-dP_,_r ", _-=_ @ yields V _Wk_" hence =k> 0

• °
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Let B _ 0, the substitution x --_2x, O'--_2_ ", _ _ _ yields

V_62/$ _(O.), hence /3 _ 0o

If botho(,/_ -- D, V -- 0 for x = 0 and (Y'_ 0, hence _ + /_ _ 0o

Note we have used the form <4) in Sectlon _E).

The PopovTheorems

Direct Control -

In this case we consider a system described b_ the differential equations

x = A x -b _(_)

t <l)
= ¢, X

E_s. (i0) are the same as (I) except _ihat _ = Oo We have the_

IW

and Popov's first theorem holds with this modification of G_iw>o

The second theorem holds also but with respe_tto Lur'e®Postnikov Liapunov

function

t

constructed as in section 5"

Kalman's Theorem

Kalman introduced the following definitions° _e system is said to be

_1

'completely controllable' if for fixed A and b_ c A s b =- 0 only if c _" Oo

_t _t
Note that c-- _I _ is Nhe transfer furor!on between _ and c x° The system is

t

_said to be "completely observable' if for fixed A and c, c b L 0 only if

i-=0.

According to Kalman I13] the following statements are equivalent° (A) the

-- 2 n-I

pair (A, b) is completely controllable, (b) det[b, A b, ooo,A b] _ 0
t At

(c) x _ b _ O for all t implies x = O, <c_) b does not belong to any

t

proper A - invariant subspaee of Rno He also adopts the definition,(A,c _ is

completely obsBrvable if and only if (At, c) is completely controllableo
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In the cited paper Kalman wr[tes Popov's inequality in a modified form in

terms of two parameters _,/3

_e [ (2_ _ + i_G<Jw)] __ 0 _orall realw

and some pair =_- O, /_ __.O, o< + /'_ • O.

He then proves the following

Theorem - Consider the system

• t

:t
where _" _ O, A is stable, (A, b) i.s completely and (A, _t ) is completely

observable. We seek a suitable Liapunov function of the Popov type.

t t 2 fO"

o

(1)

<2)

C3)

(A) V _ 0 and V __ 0 :for any admissable _ <herce V :}is a Liapunov

function which assures Liapunov stability of _ = 0 of (2) for any

(B)

admissable _) if and only if (I) holds.

Suppose V satisfies the preced:ing conditions° Then V is a Liapunov

function which assures absolute stability of (I) if and only if

either _) _ O or b) _< = O and the equality sign in

(i) occurs only at these values of w where

t -i

Re c Aiw b _ 0

(6_ There is an 'effective' procedure for computing V o

The constants o< ,_ whose existance is requ:ired are preci.sely t/hose used in (3)

to define V.
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COMPENDIUMOF EXAMPLES

Example I_ _14] Aircraft _,_ntrol_ S_stem

Let us consider the fol!ewing aircraft automatic control system where,

5=

_=

banking angle

aileron deflection

in,put to the autopilot amplifier, and

TI,, K1.a K2_ K3, K4 = physical constants.

The rolling motion is described by

II J

Yl# +¢ =- _1_;

and the input to the autop_1ot amplifier Is _iven bv

_. : K2 ¢ + K3 _ - K4 _;

and the nonlinear se_-o is described by

_= F(e),

where

_F(-.) _- 0.

By the following change of varlable_

xI = I _ +
T I K I T I

x2 =- I___$ ,
T I

x 3 = I

TIKIK3

TI K2

K 3

x i = dx__i
d_

, r =

, and f(x3)

K4 , _ =

KIK 3

= F(_),

T I
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the system is transformed into the equations

xI = . xI + f(x3} ,

x2 = - flx 3 } ,

x3 = (_- I) xI + _x 2 - rf(x3_o

The equilibrium position in this problem is not a point a phase space

but is described as the condition of steady flight. That is, the aircraft

will fly continuously with any small steady banking angle within some

threshold zone without any action on the part of the control system. Thus,

the equilibrium conditlor is specified :in the following way:

xI = x2. = O, [ x3 I< a , or

TIKIK 3

o, ,when
K 2

f(x 3 ) = 0 for Ix3 I a , and

TIKIK 3

x3f(x 3) > 0 fo_ Ix3] _ a
TIKIK3

In order to study the stability of the equilibrium position for 0 < _< i,

we choose the following candidate for a Liapunov function:

2/x3V = 1 _ x12 + B" x + f(x ) dx 3
2 2-- 2 o 3 ,

where

= - (i - _) Xl 2 - r f2(X3)o

If r > O, V is negative semidefinite. If Ix31> a

TI KI K3

V is positive definite. Therefore, the system is asymptotically stable with

respect to the equilibrium "dead-zone"o
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If _ > I, we choose the Liapunov fu.nct_on as

x3

V-- _ -i x 12 + __.x22 +/
2 2 o

f(x 3) dx 3,

where

2v =- <_- l> f<x3> - Xl]2- <r + l -_)f (x3_.

Q

Thus, V is negative semideflnite if r + i _ _ , and V is positive definite

if Ix3 I > a . In summary, the system asymptotically approaches

TIKIK 3

the equilibrium "dead-zone" as t if one of the following is

true:

TIK2 1 and r = K4 > 0 ,

(I)0< = K--T KIK-- 

(2) _ = T I K 2 1 and r = K4 TIK2 I O.

K3 > ----7q'_.3 > K3

Example 2, [152 Automatically Qontrolled Bicycle

This example deals with an automatically controlled bicycle with a non-

linear front wheel servo control. Let: _ be the angle between the bicycle

frame and the vertical, x be the angle between the front wheel and a line

connecting the points of contact of the wheels and the plane, and (3" be

the feedback signal. The nonlinear characteristic f(_) of the servomotor

satisfies the following:

(l)

or

(2)

f<_) = h= , h > 0

f(O') is a continuous saturation type function where _'f(_) > O,

0"_ 0.
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Our problem is to establish stability conditions for the undisturbed motion

of a bicycle which is controlled by a servomotor.

First, we consider the stability of the bicycle when the rolling velocity

is sufficiently large.

_o

= m O - pW_- n x

x= w$ +

The system is described by the following equations_

- p f(O _') ,

G'= (a + m G_)_

- /L + n G2 x

+ _E- W (N + pG2}] $ + I

where m, n, p are constants, W is the characteristic of the gyroscopic moment

of the front wheel, and a, E, G2, _ and N are the control system parameters,

Let us now reduce the system equatioDs to the normal Cauchy form by the

means of N I = _ , N2 =

N I =N2,

N 2 = b21 NI + b22 N 2

N 3 = b32 N2 + f((F _) ,

l/vr_s $ , N 3 = x, and _ = V/'_t:

+ b23 N3 + h2f(0_),

2

O" = PINI + P2N2 + P3N3 -(N + pG ) f(O'_) ,

where the new coefficients, bij, Pi, h, are related to the old coefficients

through the change of variable formulas. Next, we reduce this last set of

equations to canonic form. Let )_I' _k2,_3 be the roots of

- - = o.
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The canonic transformation is defined by

x 1 = b21 N1 + _.__.._1 N2 + b23
H(X_1.) H ¢_1) H ¢_)

N3 ,

x2 = b21 NI + A2 N 2 + b23 N 3 ,

x3 = - b/32 NI + I N 3 ,
h 3 h3

H(_) = h 2_k + b23h 3,

where it is assumed that _i_= _2- In terms of the new variables, the canonic

equations assume the form.:

x I =_iXl + f(0") ,

x2 =_2x2 + i(O') ,

_[O_) = /'_ IXl + /_2x2 - R f(O') ,

where

df,
_(0"> = 1 + <N + pG21 d_"

R = - h2P 2 - h3P 3 ,

A2

= - __@_i +AI P2 + b32_3_A2 -hi

= - _t_ +k2 p2 + ]t'k2 __k I i b32_3 ,

and

7_I +_2 = b22

Let us specify the condition

nW - M ,

,AIA2 -- s

nW - m _ O.

The stability with respect: to the variables x I, x 2, x3 also guarantees

stability with respect to N I _ N 2 , N3 • Thus, the problem is to choose

(1)
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the control system constants a, E, G2 , [_ , N such that stability for any

f(o'-) in the above class will be guaranteed.

We consider the following positive definite V-function, R(2kl)

and R(_2) _ O,

O and

2 2 2 2

V = - a 1 x I - 2ala2 xI x2 - a2 x 2 +

2 _iI 7kl +_2 2 7%2

O"

÷f
O

where _ (0_) is a nonlinear positive function of O'. The time derivative

of V with reference to the canonic equations is

V = - (alx I + a2x 2 + f (O_) )2

if
2

2ala2 _ al = O ,

and

2
/%2 + 2 _-_ a2 _ 2ala2 _ _a/ =

/_I+A2 _2

•

Finally, the stability criterion is reduced to the limiting of the choice of

the control system parameters by the inequalities

]_2 = R + /_i/_i + _2/_2 > O, R > O,

and inequality (i). The above inequalities place a lower limit on the

bicycle's velocity for the existence of a stable motion, along with other

constraints on the control system.

The author in reference [2] also considers stability for arbitrary small

velocities.
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Airplane with an Autopilot

This example deals with the unperturbed motion of an airplane with an

autopilot. The construction of the Liapunov functions which determine the

region of permissible perturbations may be very difficult° The author

simplifies the governing system of equations by a succession of transforma-

tions and then chooses a Liapunov function for the simplified system° The

system is "simplified with reference to the choice of V" and thus the trans-

formed system may not actually be written in a more concise form.

We consider the following system of equations for the perturbed motion:

• Q

x = y , y = (b1

=-a x - b y

where all the coefficients are positive constants°

is a linear substitution

xI = x , Yl = Y'_I ==_ x + /_ y + _ ,

2
_ = a c , y_ = b c - a , b_ = c

2
- b y)_: ,

- c_ ,

The first transformation

N= al 2 + a2# N + a4 2+ fl I),

51 = - c_ I + f2 (_' N'_I)'

where fl contains third and higher order terms in f , N , _ 1 , and f2 contains

second and higher order terms.

2
Xl_l- D_l )(i + A%l) ,

The final form of the trans-

to the canonical system; it is deflneddby

I = _ i, # = x I , N = (Yl - B

where A, B, D depend on the original constants.

formed system is given by

which transforms the above system into a canonical system. The stability

properties of both systems are equivalent. Another transformation is applied
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Let us consider the following candidate for a Liapunov function:

2 2
- 2V = N + (aI -a4) _ N- i a ? al _ I

2 2c

In the neighborhood of the unperturbed motion

there are points where V > 0 and points where V

of V with respect to this transformed system is

- N = O,

< O. The time derivative

• 2
V = al( _ 2 + N 2 +_i ) + _ (# , N,_I) ,

where _ is third order or higher in #, N '_I "

Thus, V satisfies all the conditions of Liapunov's theorem on the

instability of motion. These conditions of instability will not be satisfied

if a I = O, which is possible when a = O, or when bI = O.

The author in reference 3 then continues the stability discussion by

considering the two cases: (I) a = O, bl_ O, and (2) a _0, b I = O.

In case (i), he shows that the unperturbed motion is unstable by considering

2

a V-function in terms of x I, Yl, Zl ; namely, V = xlY I - _I /2c

In case (2), he shows that the unperturbed motion is stable, but no___!tasymp-

totically stable. In this case he first transforms the equations in

Xl, Yl, Zl into a new coordinate system x2, Y2, z2" The Liapunov function

chosen for this system is very complicated and is made up of integral terms,

exponential terms and polynomial terms. From this Liapunov function,

Berezkln shows that the system is stable°

Example 4, [17] Class of Nonlinear Feedback Control Systems

This concerns a study of the stability of the solutions of a third order

differential equation wfth a discontinuous characteristic. This equation,

given below, describes a definite class of nonlinear feedback control systems°

In fact, it can be shown that certain problems on optimal control lead to
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systems of this type. The stability of the solution is attained by increasing

a parameter K (the transfer coefficient). It is shownthat for a large enough

value of K any operating regime of the system passes after a certain time

into a "slipping" state. Hereby the dynamic error of the system becomesless

than any given number.

In this report we will state the results obtained in reference [41 . Since

the proof of the main theorem is very lengthy, we will not repeat it. In one

part of the proof the authors of the paper use Liapunov theory, although the

main part of the proof is based on other techniques.

Let us consider the differential equation
eOI

x + F(x,_,_,t) + Kx sign x (_'-_(x,_)) = O,

where K is a positive constant. The function F is continuous in all of its

argument in the region Ix I < _ ' I _ J _ CM) , _ _ _ _ _ ,

0 _-_ t < oo, is bounded in t for fixed x, x, x, and has continuous first

order derivatives in x, x, "x', t. The function _ is continuous and has piece-

wise continuous first and second order derivatives with respect to x and _ in

the region Ix I _. _ and _ x I W. _.

The above third order differential equation is equivalent to the following

sys tern:

x = y ,

y = _,

z -- - F(x, y,_,_:) - Kx sign x(:_- (ib (x, y)) °

Let us impose the following additional restrictions on the functions _(x, y)

and F(x, y, z, t):

(a) I 2F(x, y/e, _/_,_e) 1- _" A(x, y,__) ,

/ --
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for sufficiently small values of _ and where A and B are continuous functions

of their arguments; and

(b> _b(o, o) = o , _(x, o) x < o for x _ 0 ,

- q x, o)j o o,
o

+oo

An example of F which satisfies (a) is when F is linear in x, y, z and is

bounded in t for 0 __- t <_ oo . Any linear function _ = cx + dy

c and d constants, satisfies (a) and will satisfy (b) if c < 0 and d < Oo

Theorem (Proof not filven here)

Let conditions (a) and (b) be satisfied, and let _ > Oo Then, for

the given bounded region G of the phase space, there exists a positive

number K o such that for every K _ Ko, any solution of the above system whose

initial value lies in G will satisfy after some instant of time the condition

/x(t)I< _, }y(t)I< _ , I_(t)t< e o

Example 5, [18] Position Control Systems

In reference 15], FalIS_dQ and Ezeilo discuss the stability of second,

third and fourth order systems.

X = y,

The second order system is given by:

• 2

y = - aI y - a 2 x - _ (a I y + a2 x) y.

The candidate for a Liapunov function is the usual choice which one would

make for the linearlzed system; namely,

2 2

2V = a2x + y ,
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of V is

where for _ =
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The corresponding time derivative

2

V = - alY - _ (aI y + a2 x)

0 we get the "linearized" result.

(asymptotically stable in the large) we require

2 2
Y ,

Thus, for stability

aI _ O, a2 _ 0 and 6_ 0 .

The third order system is defined by

y=_

; .2
= = - al_ - a2Y - a3x -&(a 2 y + a3 x) (_ + aI y).

The Liapunov function is a quadratic form given by

2Y= (x, k2 y .
0 k3 ;z

f2(x, y, z),The Ki's are chosen such that V is defined as V = - fl(x, y, z) -

where fl and f2 are to be perfect squares in one or mote of the variables.

The resulting V and V are

2 2

2V = (R + alY ) +___i (a2 y + a3 x) +
a2

a3
2

+ a2 (ala 2 - a3) x

" 2 x)2 2V = - (ala 2 - a3)Y _ e(a2Y + a3 (_L+ alY ).

As one can see, V is positive definite and V is negative semldefinite it

a I > O, a2 > O, a3 > 0,_ 0,

aI a2 - a3 _ O.
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Therefore, these are a set of sufficient conditions for asymptotic stability

in the large.

The fourth order system is

= y

o

w = -a4 x - a3 y - a2 _ - a I w +

-4(a 3 y + a4 x) 2 (w + a I + a2 y) o

The quadratic form

2V = (x, y,_, w)

I kl k5 k6 k7 1

0 k2 k8 k9

0 0 k 3 klo

0 0 0 k 4

x

w

is taken as the Liapunov function. The Ki's are chosen such that V has the

form specified in the previous example. The results are_

2

2V = all w + a I __ + (a 2 - a3/al ) y_
+ A4 y2 +

aI

2 t+ a4 A4/a3 x + a 3 _ + a i_ + a I a2/a3 x

• 2

q
2 2 2

+ _ a3 (a3 y + a4 x) y ,

4 aI

2

al2 _ + (aI a2 - a3/2)y _
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where A4 is the fourth Routh-Hurwitz condition. FromV and V the following

stability conditions evolve:

aI _ O, a2 > O, a3 _ 0, a4 > O, A4 _ O ,

aI a2 - a3 _ O, & _ 0 ,

2
(a3Y + a4 x) < 4aI A4 .

2
a3

Example 6, [19] Nonlinear Automatic Control System

In this example a method will be given for the selection of the _ - matrix in

Malkin's method. The region of asymptotic stability obtained by this method will

be compared with that obtained by Lur'e's method. It will be seen that Malkin's

method gives a more conservative estimate of the region of asymptotic stability

than that of Lur'e, but Malkin's method as discussed in [19] is easier to apply

to an n-th order system. Below, we consider a second order system and in Example 7,

we consider an n-th order system.

The canonic equations which describe the system are

_1 =AlXl + f(_) '

=A2x + ,

= /_iXl + _2x2 , - r f(o _) ,

where /_i and/32 are characteristic constants of the system, hi _ 0 and A 2 • 0 are

characteristic roots of the system, r _ 0 is the feedback coefficient,O'gives the

position of the control element, and f(_') is the characteristic function of the

control mechanism. The restrictions placed on f(C_) are:

(a) f(G') is continuous and is such that the system has a unique solution to the

initial-value problem,

(b) f(O) = O, f(_ )O _ > 0 for O-_ 0.
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The Liapunov function is of the form

_t _ f _

V = I x A x + J f((_')dO"
2 o

where A is a hermitian positive definite quadratic form. In order to make -V

positive definite it is necessary to select A suth that the matrix

e = ! (ATk +Tk t A) <e

2

defined by

and also such that the matrix

N m

_t )
g r

is positive definite. With e negative definite this last requirement adds only that

_" = -E9 g

t > 0

i :_ g r

.Chg0se the _ - matrix in Malkin's method to be of the form:

where 6 1

matrix defined by

where

and &2 are positive. Matrix A is a symmetric, positive definite

e

thus, matrix _A.becomes,
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The column matrix _ is defined by:

2 = ! •

2 2/ 2 " 2

If the following condition is fulfilled, the equilibrium solution is asymptotically

stable:

= " 70

r

or

E 1 2_I -- 6--_ 2 ;-k2 2 _ r .

The constants 61 and _ 2are arbitrary, thus the above inequality will give a

maximum stability region for a given form of _. In _,_] , the following region

is obtained:

/_I < - rl-kl

/_2 • - rTk2 ( /'_1 < O)

/g2 <- rA2 -- 7k2 /_I (fdl>., 0)

A1

Also, in [19] , this region is compared with results obtained by Lur'e.

Example 7, [19] N-th Order Case of Example 6

In this example we consider the n th order case corresponding to Example 6.

The canonical equations are

X = _ X

CY" = _x

+ f((Y ) __

- r f (0")

where _, _3, _ are column matrices of n-th order containing elements xi, _ i, ei = i,

respectively; k is a diagonal matrix with elements hi. The characteristic roots
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J_i, are real, negative and all different.

Then (as in Example6) we take the E9 - matrix to be of the form

,,o o)
0 0

• go o%

0 0 " "'_ " " (:n

where _ i>O are arbitrary. The A and K matrices used in Malkin's method are defined

by

ai i = . 6 i/Ai
, alk = O (i _ k), gi = E i /_i .

2Ai 2

A sufficient condition for asymptotic stability of the equilibrium position is that

_0 o

Expanding this determinant gives the following inequality:

+ . . + I _n
r o

The maximum region of asymptotic stability given by this inequality is

/%i <" Ai r ,

where k = i, ..o, n ; i = I,

k{ _k< - Ak r
_ k < - 7%-k (r - Sk)

oo., k - i, + I, .o., n ; Sk =

These conditions apply to the case of rea____lneRative rootso

(_i<o)

(4 i_ o )

7_ _ i
i

Example 8, _9] N th Order Control System
i

In this example Komarnitskaia considers the system whose characteristic

equation has complex conjugate roots with negative real parts as well as real

negative roots.

• °
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Let /_i, xi, /_i (i = i, o.., 2S) be complex conjugate pains, _j, xj, /_j

(j = 2S + i, ..., n) be real numbers; also, let 7kj < O and Re(_i) < Oo

In this case Malkin's _) - matrix takes the form

0 " _ 1 .... 0 0 0 .... 0

0 .... 0 0 0 . .

• o ^ o o *

0 - _S-I ....

- 62 s "I0 0 ....

0 0

-e 1 0

• • o • •

0 0 ....

0 O, .... 0

0 0 .... -2_+ i • . . 0

0 .... 0 ....0
0 0 -26. n

The same Liapunov function is used as in thewhere 6 i _ O are arbitrary.

previous examples and its time derivative is

• t t

V = x_ + (A _ + _
2

x f (0_) -r f (0_)

The elements of the A matrix are

_ii = O, _ ii+l = - _ i

7_i+ Ai + i

i = I, 3, 5, o.. 2S-I

_ii = - &i

Ai
i = 2S + i, .o., n

all other _ik = O.

We shall write

xk = uk + Uk+ I i, _k = _k + _k+l i

x =u -u i, =9 -x' i
k+l k k+l -k+ w vi k k+l

k=1,3,...,2S-i

Then we have



2S-I

• Z
V=" _-k

k=l, 3

II

k=2S+l

2
(Uk2 + Uk+ I )

n

-£ ,k x_
k=2S+l

xkf (0")

.°

+ 2

s

_" _("_'2k-I "
k=l

2k-I ) U2k-i + _2k u2k7 f(O')

7_2k_l+_2k
"7_1

2
- r f (0 "_)

The condition for absolute stability becomes

_I 0

., ,o .. .

• o, • oj •

. • • . •

0 61,

0 0

0 0

Where,* g _*i = I _ i' 2

_'3"
,, 9:

g.
n

2_k n

or

2 2

_1_ + _'2

+ _s +oo.
E 2s-i

o _"1

0 _'2

o _'3

° t

"k

n £_n

Bn r

D

2

2

/ __:s-, __,__
2s-i _Tk2s-l+Tk2s
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and using the arbitrariness of _i, _ 2 the conditions for absolute stability become

_i < - mini ,

2

2 2

_j+l _ _j (_J+_+l) _ j + !4 ( _j + _+i )_" _

2 <(r-Z _j)<A +_ )
2k+2 j 2k+l 2k+2 _2k+l

+
! (_2k+l+_2k+2)2 (r - _- _j)
4 j

2 2 2

_j+l <" _ j ( /"%j +_j+l)_ + _i (_j +_-j+l ) _j

2

_2k÷2 < (r-_._- _i mi)_2k+l +_k+2 )_2k+l

2 2

+ I (Tk2k+l +_2k+2 ) (r - __ _j -_ mi)
4 j i

/3i_. 0

_i>/ o

i = 2s+l, ..., n; j=l,3,...,2k-l,2k+3,...,2s-l; k=l,.o.,S-i

J 'where _j = -2 (_j + _j 2 +_2j21 ) , mi =-

7tj+7%j+l

are positive numbers such that

_" _-- _j < r
i mi+ j --

As an example consider a system described by

e

Xl : _IXI + f(_')

x 2 = _2Y, 2 + f(0")

o

O _ = /$1Xl +/_2x2 - r

with MI < O, M 2 andS2 _ O,

as in the general case apply.

inequality.

_I = MI + M2i

_2 = MI - M2i

f(_) _l =_l + _2 i
J

and for all other quantities the same assumptions

The stability region is defined by the

_22< r(AI+A2)_i + I (>_i +7_2 )2 r2
4



The stability region is shown in fig.(1)

method of Lur'e

method J

of this paper

fig. (i)

Example 9 [20_

The equation for a hydraulic actuator, considering the load, is

where _ (0") _ L40-" is the velocity of

the unloaded actuator and _(w ) is the effect of the loado Here _
F

is a constant, u is the pump discharge coefficient, O-is the valve

displacement and Po is the difference between the pressure in the supply

line and the return line. The effect of the load, _(w), is given by

i for w __. i

_(w) = _-_ for O < w < i

O for w __. O

where w is, in general, of the form

oQ Q

W : i- (a _ + b_ + c_)signo"

(sign G- is the Kroneher function = -i if _"< O, O if O"_ = O, + i if O_ O)

(1)

(2)

(3)
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Weconsider three special cases of (3), ViZo

w = I - c _ signO_

w = i - b $ sign_

w = i - (b _ + c_)signo-

For each of these cases we reduce the equation (I) to Cauchynormal form,

(4)

(5)

(6)

obtaining

= f((r) _I (O')

= f((Y) @2 (O')

$ = f(_) q3 (o')

(7)

(8)

(9)

respectively, where

_i(0") = - c _ sign_

_2(0-) = I _ - b
2

_3(_') = i _ - b
2

-%

f(O _) signO- + _ b2 f2 (O-) + 4

2 2f(_) signG" + \ b f (O') + 4 (i - c # signO" )'_

Notice that (9) is meaningful only if w > O.

This will be so if i - _ c sign 0" _ O is satisfied.

satisfied, the actuator is not operating and # = O.

If (iO) is not (lO)

Consider the indirect control system

N d = Z k bdk Nk + n d (d = i, ..., n)

= f(_) _ (w) (k= i, ...,n) (ii)

0" = ___ kp k Nk - r

where b k, Pk, n , and r are constants.

Xd -- " Pd Xd + f (c') _(w)

O" = _k Ck Xk -C_"

We write (ii) in canonical form _S f@_luWs!

(d = I, o..,n)

(k = i, ..., n) (12)

6- = _d Bd Xd -r f (0") @ (w)
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where ck , q, r, Bd, and Pd are constants.
@

Notice that if _ = O, then

Xd = - Pd Xd (13)

0" : _ k Ck Xk - q

The problem is to choose the Bk such that the equilibrium point

xi = O- = # = 0

is stable. We choose as a Liapunov function

V : _i _ k piai+pkak xi xk + 12 _k Ak x2 +/0"

o

f (O")dO"
(14)

Taking the total derivative W. rot.t,

• [ 2V : - _k akXk + _ f(O') _(_)] 2 Ik Pk Ak Xk

+ _-_ f(CF) d f(_') _ (0")

o

as long as

A k + 2 _ ak + 2 ak

ai

i Pi +Pk + Bk = O(k:l,..o,n)

(15)

(16)

is satisfied. Notice that the conditions placed on the system along with the

additional restriction

f(O) : O, f(CY)O" > 0 if (_ 0

insure that (14) is positive definite. Furthermore, for the various choices

(7), (8), (9) for _(0"), (15) is always negative in the region in which the

actuator is operating and O'_ O. If 0"70, _1/_ _ 0 and _3/a_ < Oo

If 0_< O, _/_ _0 and _#> O. Of course ___, : O. Hence the system is

stable within the operating range of the actuator whenever (16) is satisfied.

If the actuator is not operating, _ = O, then, as can be seen from (13), the

xi are attenuated and tend toward the origin. Hence the system (II) is stable

for all three choices of _(0"), as long as (16) is satisfied.
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Examplei0 [21]

Consider the third-order indirect-control system

_p = _kp _p + f(O') (p = i, 2)

= BI _i + B2 _2 - r f(O')

where it is assumed that Reap < O, r > O, f(O) = O, 0 < f(_)
0-

and that f(O') is defined for all realO'.

The Routh-I_urwitz theorem will be used to establish necessary and

sufficient conditions for the absolute stability of (i). These conditions

will be compared with the sufficient conditions obtained from the methods of

Popov and Lur'e, and will be applied to the second problem of Bulgakov.

Assume that (I) is absolutely stable. Then the linear system obtained

by letting f(fy') = h O" is asymptotically stable., By the Routh-Hurwitz

theorem, the following inequalities hold:

a I + r h _20

b2h >0

A h2 + B h

where A = r b I B = r a2 + alb I - b 2

+ c >O

C = ala 2

bl= air - (BI + B2) b2 = ra2 +

al= -(2_ I +_,2 ) a2 = 7%1)% 2

BI A2 + B2 A I

In light of the conditions placed on the system (I), the conditions (2) are

equivalent to either A > 0 and -2 A_< B < r2a2 + aI A

r

or A = 0 and O _ B < r a2

The conditions obtained by the method of Lur'e for absolute stability are

T 2 =
BI + B__2 + r > O, and

2 2 2

D = r(7_ i +_-2 ) + hi BI + AzB2 + 2A I )%2 _ ]_ _ 0

(1)

< oo.,

(2)

(3)

and r _ O.
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For the system under consideration, these conditions are equivalent to:

?'2a2 + alA - B r > 0 and B >---2 r a2

B2or -4AC < O.

either

(4)

These conditions are considerably more restrictive than (3), as is easily seen

by examining the regions they determine in the A, B plane° Hence, the method

of Lur'e does not yield necessary conditions for absolute stability.

Vo Mo Popov (in A.+ R.C. VI9#I) extended the region given by (4) to the

following,

r2a2 + alA.

A > O and -2 _-A-_< B < r (5)

but did not consider the two cases

A = O and 0 < B < r a2 (6)

and A = O and B = O. (7)

V. A. Pliss studied case (6) and proved that in that case the system (i)

is absolutely stable• However it can be shown that the condition (7) does not

satisfy Popov's criterion• Hence, the method of Popov does not yield necessary

conditions for absolute stability, although in this case the conditions are

much broader than those of Lur'e.

In the second method of Bulga_ov we consider the system

T2 "" ¢+ u + KgV+_= O

v_ = f* (_), (7" = a _ +

Changing notation we let

+

_ _ T 2p = T 2 , n 2 = - i , i =

b21 =- _[r ' b22 - V__p Pl = a- q c

t =

, f(_) -- 1

P2 = (E-pG2)

(8)

f *(o-)
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The system (8) is then reduced to the normal form

D •

N 1 = N2 , N 2 = b21N 1 + b22N 2 + n 2 _

A. M. Letov studied this system and found the region of absolute stability

2

to be the region inside the parabola (N + _ -i) = 4/N_ The criterea (3)

extend this region to the entire quadrant _ > O, N _ 0 except for the

curvilinear triangle formed by the segments [0, lJ of the # and N axes

and the parabola (N + _ - 1) 2 = 4 N _. The only part of the boundary

included in the region is the half line N = O, _ _ i.

It should be noted in passing that the Aizerman conjecture has an

affirmative answer for the system (i), i.e., the region of absolute stability

for the system (1)colncldes with the stability region when f(_) = h o- .

(9)

Example Ii, Letov _5],: ChanR [22]

Letov considered an automatic control system described by the canonical

equations

M

X =

m

A x - b f (_)
t

c x - _ f (or)

whe...:/-0-P2

0 0

0 0

0 -Pn

m

b =

and the Pl are distinct and real numbers greater than zero.

As a candidate for a Liapunov function he chose

v -- i_ _ +
2

f(_) do_

(i)

(2)
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which upon differentiation with respect to time yields

V = i x x + _i _ _ + R f(cr)

2 2

t t t t

= i _ A "-x + _ A _) + R f(fr)_ _ -_f(o-))

2

t _ t _

-I f(o-)b x - i f(O') x b

2 2

t 2 t t

= _ A _ -R p f(O-) + f(o')(-_ + R _ )

t
.{ = (_, f)

-Al_
2(b - R

Since -A is positive definite we need only make

-A

i t

t

c) RF

m

I (b-Rc)

2

2 (b-Rc) R_

> O.

to have V negative definite. Hence Letov obtained the stability condition

I (_ - Rc) t (-A)-I (_'-R _)

Chang points out that this can be written

R 2 (ct A c)-2 R b A c- 2 + b A b > 0

or

2
-R _ - R m -S > 0

_t -I_ _t -I_ t -i

where _ = - c A c, m = 2 b A c -2p , s =-b A b

(3)

(4)

(5)

(6)
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Let M be a constant and introduce the variables x, y

y - x =m , x y = - s + M

x and y are variables in the sense that we treat the parameters of the system,

reflected here in m, _, s, as variables° Then (6) becomes

(x- R)(y +R)_ M

In the case of equality in (8) we have

(x- R)(y+3) = M

which is an equation of a hyperbola. For each value of R there is a hyperbola

in the x, y plane which bounds a region of stability° Chang shows that the

region of stability as given by (8) is on the concave side of the hyperbola

given by (9)° Then the envelope of the family of hyperbolas is the envelope

of the stability region in the parameter space (x,y-plane). This envelope

can be found as follows. Let

F(x, y, R) = (x-R)(y+r)-M = O

Then the envelope is found by eliminating R between

F(x, y, 3) --0, F(x, y R) --0
_N

This yields the envelope (two straight lines)

2
(x+y) - 4M=O

and the value of R

3=1 (x-y) =-! __
2 2

t -i

R= 2p-_ A

Upon substituting (i0) in (5) Chang obtains the single criterion

t -I_ t -I

2p-.g A c > ..--g A g
-t
c A'I'c

(7)

(8)

(9)

(Io)

(Ii)
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